內容簡介
該書完整地敘述了經典信全催息論和量子資訊理論戒判籃,首先介組舟殼紹了香農熵的基本概念和各種套用,然後介紹再檔祝主了量子信息和量子計算的核心特點,並從經典資訊理論和量子資訊理論的犁白旬角度,介紹了編碼譽歸殃、壓縮、糾錯、加密府祖多精和信道容量等內容,採用非正式但科學的精確方法,為讀者提供了理解量子門和電路的知識。
圖書目錄
Foreword
Introduction
1 Probability basics
2 Probability distributions
3 Measuring information
4 Entropy
5 Mutual information and more entropies
6 Differential entropy
7 Algorithmic entropy and Kolmogorov complexity
8 Information coding
9 Optimal coding and compression
10 Integer,arithmetic,and adaptive coding
11 Error correction
12 Channel entropy
13 Channel capacity and coding theorem
14 Gaussian channel and Shannon-Hartley theorem
15 Reversible computation
16 Quantum bits and quantum gates
17 Quantum measurements
18 Qubit measurements,superdense coding,and quantum teleportation
19 Deutsch-Jozsa,quantum Fourier transform,and Grover quantum database search algorithms
20 Shor’s factorization algorithm
21 Quantum information theory
22 Quantum data compression
23 Quantum channel noise and channel capacity
24 Quantum error correction
25 Classical and quantum cryptography
Appendix A(Chapter 4)Boltzmann’s entropy
Appendix B(Chapter 4)Shannon’s entropy
Appendix C(Chapter 4)Maximum entropy of discrete sources
Appendix D(Chapter 5)Markov chains and the second law of thermodynamics
Appendix E(Chapter 6)From discrete to continuous entropy
Appendix F(Chapter 8)Kraft-McMillan inequality
Appendix G(Chapter 9)Overview of data compression standards
Appendix H(Chapter 10)Arithmetic coding algorithm
Appendix I(Chapter 10)Lempel-Ziv distinct parsing
Appendix J(Chapter 11)Error-correction capability of linear block codes
Appendix K(Chapter 13)Capacity of binary communication channels
Appendix L(Chapter 13)Converse proof of the channel coding theorem
Appendix M(Chapter 16)Bloch sphere representation of the qubit
Appendix N(Chapter 16)Pauli matrices,rotations,and unitary operators
Appendix O(Chapter 17)Heisenberg uncertainty principle
Appendix P(Chapter 18)Two-qubit teleportation
Appendix Q(Chapter 19)Quantum Fourier transform circuit
Appendix R(Chapter 20)Properties of continued fraction expansion
Appendix S(Chapter 20)Computation of inverse Fourier transform in the factorization of N=21 through Shor’s algorithm
Appendix T(Chapter 20)Modular arithmetic and Euler’s theorem
Appendix U(Chapter 21)Klein’s inequality
Appendix V(Chapter 21)Schmidt decomposition of joint pure states
Appendix W(Chapter 21)State purification
Appendix X(Chapter 21)Holevo bound
Appendix Y(Chapter 25)Polynomial byte representation and modular multiplication
Index
Appendix C(Chapter 4)Maximum entropy of discrete sources
Appendix D(Chapter 5)Markov chains and the second law of thermodynamics
Appendix E(Chapter 6)From discrete to continuous entropy
Appendix F(Chapter 8)Kraft-McMillan inequality
Appendix G(Chapter 9)Overview of data compression standards
Appendix H(Chapter 10)Arithmetic coding algorithm
Appendix I(Chapter 10)Lempel-Ziv distinct parsing
Appendix J(Chapter 11)Error-correction capability of linear block codes
Appendix K(Chapter 13)Capacity of binary communication channels
Appendix L(Chapter 13)Converse proof of the channel coding theorem
Appendix M(Chapter 16)Bloch sphere representation of the qubit
Appendix N(Chapter 16)Pauli matrices,rotations,and unitary operators
Appendix O(Chapter 17)Heisenberg uncertainty principle
Appendix P(Chapter 18)Two-qubit teleportation
Appendix Q(Chapter 19)Quantum Fourier transform circuit
Appendix R(Chapter 20)Properties of continued fraction expansion
Appendix S(Chapter 20)Computation of inverse Fourier transform in the factorization of N=21 through Shor’s algorithm
Appendix T(Chapter 20)Modular arithmetic and Euler’s theorem
Appendix U(Chapter 21)Klein’s inequality
Appendix V(Chapter 21)Schmidt decomposition of joint pure states
Appendix W(Chapter 21)State purification
Appendix X(Chapter 21)Holevo bound
Appendix Y(Chapter 25)Polynomial byte representation and modular multiplication
Index