《統計物理和蛋白質摺疊講義 (英文影印版)》是一部出版的圖書,作者是[美]Kerson Huang(黃克遜)。
書籍信息,內容簡介,圖書目錄,
書籍信息
作者: | [美]Kerson Huang(黃克遜) | ||
定價: | 18.00元 | 頁數: | 160頁 |
ISBN: | 7-309-05203-X/O.375 | 字數: | 100千字 |
開本: | 32 開 | 裝幀: | 平裝 |
出版日期: | 2006年11月 |
內容簡介
本書是作者於2004年在清華大學周培源套用數學中心,給多種學科背景的學者講述統計物理在生物學科的套用的講義基礎上形成的。全書分16章和一個附錄。前10章簡潔地歸納了生命科學中用得著的核心概念,它們分別是熵、麥克斯韋ˉ玻爾茲曼分布、自由能、化學勢、相變、相變動力學、關聯函式、隨機過程和朗之萬方程。第11章開始,講述的側重點逐步轉移到生命科學。其中第11章講述蛋白質結構同生命過程的聯繫。第12章講述自組裝的生物學過程,第13章介紹蛋白質摺疊的動力學機理,第14章講述蛋白質摺疊的指數律,第15章闡述自迴避行走和湍流,第16章作為全書的結尾,提出了控制蛋白質一級、二級、三級結構的機制的假設,附錄中介紹蛋白質分子中能量級在線上制的物理學模型。
全書以簡潔的語言,精闢地提出了可能的研究方向,對於從事生命科學研究的多學科讀者都具有指導意義。
全書以簡潔的語言,精闢地提出了可能的研究方向,對於從事生命科學研究的多學科讀者都具有指導意義。
圖書目錄
Foreword
Introduction
1. Entropy
1.1 Statistical Ensembles
1.2 Microcanonical Ensemble and Entropy
1.3 Thermodynamics
1.4 Principle of Maximum Entropy
1.5 Example: Defects in Solid
2. Maxwell-Boltzmann Distribution
2,1 Classical Gas of Atoms
2.2 The Most Probable Distribution
2.3 The Distribution Function
2.4 Thermodynamic Properties
3. Free Energy
3.1 Canonical Ensemble
3.2 Energy Fluctuations
3.3 The Free Energy
3.4 Maxwell's Relations
3.5 Example: Unwinding of DNA
4. Chemical Potential
4.1 Changing the Particle Number
4.2 Grand Canonical Ensemble
4.3 Thermodynamics
4.4 Critical Fluctuations
4.5 Example: Ideal Gas
5. Phase Transitions
5.1 First-Order Phase Transitions
5.2 Second-Order Phase Transitions
5.3 Van der Waals Equation of State
5.4 Maxwell Construction
6. Kinetics of Phase Transitions
6.1 Nucleation and Spinodal Decomposition
6.2 The Freezing of Water
7. The Order Parameter
7 1 Ginsburg-Landau Theory
7.2 Second-Order Phase Transition
7.3 First-Order Phase Transition
7.4 Cahn-Hilliard Equation
8. Correlation Function
8.1 Correlation Length
8.2 Large-Distance Correlations
8.3 Universality Classes
8.4 Compactness Index
8.5 Scaling Properties
9. Stochastic Processes
9.1 Brownian Motion
9.2 Random Walk
9.3 Diffusion
9.4 Central Limit Theorem
9.5 Diffusion Equation
10. Langevin Equation
10.1 The Equation
10.2 Solution
10.3 Fluctuation-Dissipation Theorem
10.4 Power Spectrum and Correlation
10.5 Causality
10.6 Energy Balance
11. The Life Process
11.1 Life
11.2 Cell Structure
11.3 Molecular Interactions
11.4 Primary Protein Structure
11.5 Secondary Protein Structure
11.6 Tertiary Protein Structure
11.7 Denatured State of Protein
12. Self-Assembly
12.1 Hydrophobic Effect
12.2 Micelles and Bilayers
12.3 Cell Membrane
12.4 Kinetics of Self-Assembly
12.5 Kinetic Arrest
13. Kinetics of Protein Folding
13.1 The Statistical View
13.2 Denatured State
13.3 Molten Globule
13.4 Folding Funnel
13.5 Convergent Evolution
14. Power Laws in Protein Folding
14.1 The Universal Range
14.2 Collapse and Annealing
14.3 Self-Avoiding Walk (SAW)
15. Self-Avoiding Walk and Turbulence
15.1 Kolmogorov's Law
15.2 Vortex Model
15.3 Quantum Turbulence
15.4 Convergent Evolution in Turbulence
16. Convergent Evolution in Protein Folding
16.1 Mechanism of Convergent Evolution
16.2 Energy Cascade in Turbulence
16.3 Energy Cascade in the Polymer Chain
16.4 Energy Cascade in the Molten Globule
16.5 Secondary and Tertiary Structures
A. Model of Energy Cascade in a Protein Molecule
A.1 Brownian Motion of a Forced
Harmonic Oscillator
A.2 Coupled Oscillators
A.2.1 Equations of Motion
A.2.2 Energy Balance
A.2.3 Fluctuation-Dissipation Theorem
A.2.4 Perturbation Theory
A.2.5 Weak-Damping Approximation
A.3 Model of Protein Dynamics
A.4 Fluctuation-Dissipation Theorem
A.5 The Cascade Time
A.6 Numerical Example
Index
Introduction
1. Entropy
1.1 Statistical Ensembles
1.2 Microcanonical Ensemble and Entropy
1.3 Thermodynamics
1.4 Principle of Maximum Entropy
1.5 Example: Defects in Solid
2. Maxwell-Boltzmann Distribution
2,1 Classical Gas of Atoms
2.2 The Most Probable Distribution
2.3 The Distribution Function
2.4 Thermodynamic Properties
3. Free Energy
3.1 Canonical Ensemble
3.2 Energy Fluctuations
3.3 The Free Energy
3.4 Maxwell's Relations
3.5 Example: Unwinding of DNA
4. Chemical Potential
4.1 Changing the Particle Number
4.2 Grand Canonical Ensemble
4.3 Thermodynamics
4.4 Critical Fluctuations
4.5 Example: Ideal Gas
5. Phase Transitions
5.1 First-Order Phase Transitions
5.2 Second-Order Phase Transitions
5.3 Van der Waals Equation of State
5.4 Maxwell Construction
6. Kinetics of Phase Transitions
6.1 Nucleation and Spinodal Decomposition
6.2 The Freezing of Water
7. The Order Parameter
7 1 Ginsburg-Landau Theory
7.2 Second-Order Phase Transition
7.3 First-Order Phase Transition
7.4 Cahn-Hilliard Equation
8. Correlation Function
8.1 Correlation Length
8.2 Large-Distance Correlations
8.3 Universality Classes
8.4 Compactness Index
8.5 Scaling Properties
9. Stochastic Processes
9.1 Brownian Motion
9.2 Random Walk
9.3 Diffusion
9.4 Central Limit Theorem
9.5 Diffusion Equation
10. Langevin Equation
10.1 The Equation
10.2 Solution
10.3 Fluctuation-Dissipation Theorem
10.4 Power Spectrum and Correlation
10.5 Causality
10.6 Energy Balance
11. The Life Process
11.1 Life
11.2 Cell Structure
11.3 Molecular Interactions
11.4 Primary Protein Structure
11.5 Secondary Protein Structure
11.6 Tertiary Protein Structure
11.7 Denatured State of Protein
12. Self-Assembly
12.1 Hydrophobic Effect
12.2 Micelles and Bilayers
12.3 Cell Membrane
12.4 Kinetics of Self-Assembly
12.5 Kinetic Arrest
13. Kinetics of Protein Folding
13.1 The Statistical View
13.2 Denatured State
13.3 Molten Globule
13.4 Folding Funnel
13.5 Convergent Evolution
14. Power Laws in Protein Folding
14.1 The Universal Range
14.2 Collapse and Annealing
14.3 Self-Avoiding Walk (SAW)
15. Self-Avoiding Walk and Turbulence
15.1 Kolmogorov's Law
15.2 Vortex Model
15.3 Quantum Turbulence
15.4 Convergent Evolution in Turbulence
16. Convergent Evolution in Protein Folding
16.1 Mechanism of Convergent Evolution
16.2 Energy Cascade in Turbulence
16.3 Energy Cascade in the Polymer Chain
16.4 Energy Cascade in the Molten Globule
16.5 Secondary and Tertiary Structures
A. Model of Energy Cascade in a Protein Molecule
A.1 Brownian Motion of a Forced
Harmonic Oscillator
A.2 Coupled Oscillators
A.2.1 Equations of Motion
A.2.2 Energy Balance
A.2.3 Fluctuation-Dissipation Theorem
A.2.4 Perturbation Theory
A.2.5 Weak-Damping Approximation
A.3 Model of Protein Dynamics
A.4 Fluctuation-Dissipation Theorem
A.5 The Cascade Time
A.6 Numerical Example
Index