《統計力學——非平衡態熱力學的隨機方法(第二版)(英文影印版)》是2014年出版的圖書,作者是斯特里特。
基本介紹
- 書名:統計力學——非平衡態熱力學的隨機方法(第二版)(英文影印版)
- 作者: (英)斯特里特
- ISBN: 978-7-301-25176-8
- 頁數:396頁
- 定價:¥67.00元
- 出版時間:2014-12-29
- 裝幀:平裝
- 開本:16開
- 書號:25176
- 版次:1
- 叢書名:中外物理學精品書系
- 字數: 395 千字
出版背景,章節目錄,
出版背景
本書詳細地介紹了用統計力學方法處理非平衡態熱力學和統計物理問題的研究。其中統計方法包含了經典統計和量子統計。本書研究對象主要為平均能量守恆和熵增的系統。探討了熱噪聲、化學反應、擴散等等問題。 本書可作為統計物理、凝聚態物理、材料科學領域的研究者的參考書,也可供相關領域研究生作為教材使用。
章節目錄
Preface v
Classical Statistical Dynamics
1. Introduction
2. Probability Theory
2.1 Sample Spaces and States
2.2 Random Variables, Algebras
2.3 Entropy
2.4 Exercises
3. Linear Dynamics
3.1 Reversible Dynamics
3.2 Random Dynamics
3.3 Convergence to Equilibrium
3.4 Markov Chains
3.5 Exercises
4. Isolated Dynamics
4.1 The Boltzmann Map
4.2 The Heat-Particle
4.3 The Hard-Core Model of Chemical Kinetics
4.4 Chemical Reactions
4.5 Energy of Solvation .
4.6 Activity-led Reactions
4.7 Exercises
5. Isothermal Dynamics
5.1 Legendre Transforms
5.2 The Free-energy Theorem
5.3 Chemical Kinetics
5.4 Convergence in Norm
5.5 Dilation of Markov Chains
5.6 Exercises
6. Driven Systems
6.1 Sources and Sinks
6.2 A Poor Conductor
6.3 A Driven Chemical System
6.4 How to Add Noise
6.5 Exercises
7. Fluid Dynamics
7.1 Hydrostatics of a Gas of Hard Spheres
7.2 The Fundamental Equation
7.3 The Euler Equations
7.4 Entropy Production
7.5 A Correct Navier-Stokes System
Quantum Statistical Dynamics
8. Introduction to Quantum Theory
9. Quantum Probability
9.1 Algebras of Observables
9.2 States
9.3 Quantum Entropy
9.4 Exercises
10. Linear Quantum Dynamics
10.1 Reversible Dynamics
10.2 Random Quantum Dynamics
10.3 Quantum Dynamical Maps
10.4 Exercises
11. Isolated Quantum Dynamics
11.1 The Quantum Boltzmann Map
11.2 The Quantum Heat-Particle
11.3 Fermions and Ions with a Hard Core
11.4 The Quantum Boltzmann Equation
11.5 Exercises
12. Isothermal and Driven Systems
12.1 Isothermal Quantum Dynamics
12.2 Convergence to Equilibrium
12.3 Driven Quantum Systems
12.4 Exercises
13. In_nite Systems
13.1 The Algebra of an In_nite System
13.2 The Reversible Dynamics
13.3 Return to Equilibrium
13.4 Irreversible Linear Dynamics
13.5 Exercises
14. Proof of the Second Law
14.1 von Neumann Entropy
14.2 Entropy Increase in Quantum Mechanics
14.3 The Quantum Kac Model
14.4 Equilibrium
14.5 The _-Limit
14.6 The Marginals and Entropy
14.7 The Results
15. Information Geometry
15.1 The Jaynes-Ingarden Theory
15.2 Non-Linear Ising Dynamics
15.3 Ising Model Close to Equilibrium
15.4 Non-linear Heisenberg Model
15.5 Estimation; the Cram_er-Rao Inequality
15.6 Efron, Dawid and Amari
15.7 Entropy Methods, Exponential Families
15.8 The Work of Pistone and Sempi
15.9 The Finite-Dimensional Quantum Info-Manifold
15.10 Araki's Expansionals and the Analytic Manifold
15.11 The Quantum Young Function
15.12 The Quantum Cram_er Class
15.13 The Parameter-Free Quantum Manifold
15.14 Exercises
Bibliography
Index