《結構完整性評估和大變形分析》是黃河水利出版社出版的圖書,作者是胡少偉。本書可供有關科研、設計和工程單位的科技工作者參考,也可作為高等院校土木、水利、力學及其機械類專業研究生的教學參考書。
基本介紹
- 書名:結構完整性評估和大變形分析
- 作者:胡少偉
- ISBN:9787807340140
- 出版社:黃河水利出版社
基本信息,內容簡介,目錄,
基本信息
出版時間: 2006-01-01
作者:胡少偉
出版社:黃河水利出版社
出版社:黃河水利出版社
版 次: 1
頁 數: 169
裝 幀: 平裝
開 本:
所屬分類: 圖書>教材教輔>大學教材教輔
內容簡介
結構完整性評估和大變形分析一直是土木、機械和力學及其航空航天領域專家學者研究的重要課題。《結構完整性評估和大變形分析》是作者通過多年研究工作在結構非破壞性評估和結構大變形計算分析方面 的簡略總結。書中首次把有限元線法引入斷裂力學,推導建立了斷裂有限元線法,用於結構的完整性分析和評估。全書分為四部分:第一部分(第一、二、三、四和五章)敘述了斷裂和有限元線法及其在機翼開裂分析中的套用以及與一階可靠性法相結合評估結構完整性方面的研究成果;第二部分(第六、七章)介紹了最新超音波檢測結構疲勞裂縫技術以及定量非破壞性評估技術與機率可靠性方法相結合的套用情況;第三部分(第八、九、十、十一和十二章)詳細提供了兩種大變形理論在某發動機飛輪圓盤分析評估中的套用,給出了爆炸強度和開裂屈服的計算方法,並與其他軟體進行了分析對比;第四部分(第十三章)初步分析了材料不連續屈服特性對結構失穩和破壞的影響規律。
目錄
Preface
List of symbols
Chapter 1 Finite Element Method of Lines (FEMOL)
1.1 Introduction
1.2 Model Boundary Value Problem
1.3 Domain Partition
1.4 Element Mapping
1.5 Trial Functions
1.6 Global Energy Functional and Variational Equations
1.7 Implementation of ODE Solver
References
Chapter 2 Cracking Analysis of Fracture Mechanics by FEMOL
2.1 Introduction
2.2 Basic Description of FEMOL in Fracture Mechanics
2.3 Singular Line Element Mapping Technique in FEMOL
2.4 Application of FEMOL in Fracture Mechanics
2.5 SIF and Dimensionless COD Calculation
2.6 Conclusions
References
Chapter 3 3D Finite Bodies Analysis Containing Cracks Using FEMOL
3.1 Introduction
3.2 The Basic Processing Description of3D FEMOL
3.3 Basic Description of FEMOL in Fracture Mechanics
3.4 Singular Line Element Mapping Technique in FEMOL
3.5 Application of FEMOL in Fracture Mechanics ;
3.6 Conclusions
References
Chapter 4 First Order Reliability Method (FORM)
4.1 The First Order Reliability Method
4.2 Fatigue Reliability
4.3 Numerical Example to Illustrate Affect of POD
References
Chapter 5 Application to Weep Hole Cracks in C141 Wing
5.1 C141 Weep Hole Problem
5.2 Stress and SIF Analysis of C141 Weep Hole Configuration
5.3 Fit of Experimental and Neural Net POD Data
5.4 Fatigue Reliability Analysis of C141 Weep Hole Configuration
5.5 Estimates of Feasibility and Future Work
References
Chapter 6 Automated Ultrasonic Technique to Detect Fatigue Craeks
6.1 Introduction
6.2 Ultrasonic Technique
6.3 Equipment and Operator Interface
6.4 Validation Specimens
6.5 Field Demonstration
6.6 Laboratory Validation Tests
6.7 Blind Field Validation Tests
6.8 Summary and Discussion
References
Chapter 7 Techniques and Instrumentation for Structural Diagnostics
7.1 Introduction
7.2 Measurement Models
7.3 Laser-based Ultrasonics
7.4 Neural Networks
7.5 Integrated Microsensors
7.6 Probabilistic Fatigue Methods
7.7 Fatigue Reliability
7.8 Keynote Speakers
7.9 Direct Integration Method
7.10 Numerical Examples
7.11 Concluding Comment
References
Chapter 8 The Mechanic Behaviors of Rotating Disks
8.1 Elastic Analysis of Rotating Disks
8.2 Elastic-Plastic Analysis of Rotating Disk
References
Chapter 9 Large Deformation Analysis of Rotating Disk Using ,12
Deformation Theory
9.1 Theory Formation
9.2 Calculated Examples
9.3 The Bursting Speed of Rotating Disk
9.4 The Stress Distribution at Instability
9.5 The Elastic-Plastic Interface of Rotating Disk Using J2 Deformation Theory
9.6 Effect of Poisson's Ratio v and Hardening Modulus P
References
Chapter 10 The Burst Strength and Necking Behaviour of Rotating Disks
10.1 Introduction
10.2 Problem Formulation
10.3 Bifurcation Analysis
10.4 Behaviour of Imperfect Disks
10.5 Conclusions
10.6 Appendix: About Thin Rotating Ring
References
Chapter 11 Large Deformation Analysis for Rotating Disk Using J2
Flow Theory
Chapter 12 Calculated Analysis for Rotating Digk Using ABAQUS and ANSYS-
12.1 Analysis of Rotating Disk with Continuous Yield Material
12.2 Buckling and Bifurcation Analysis of Rotating Disk
12.3 Rotating Disk with Discontinuous Yield
12.4 ABAQUS Analysis of the True Minidisk
12.5 Instability Analysis of Minidisk Using ANSYS at Normal Temperature
References
Chapter 13 The Role of Discontinuous Yield of Material (Portevin-Le
Chatelier (PLC) Effect, Jerky Flow)
13.1 Jerky Flow, Discontinuous Yield Flow of Material
13.2 The Strain Rate Sensitivity (SRS) and Instability Criterion Description
13.3 Test Examples
13.4 Computer Simulation of PLC Effect
References
List of symbols
Chapter 1 Finite Element Method of Lines (FEMOL)
1.1 Introduction
1.2 Model Boundary Value Problem
1.3 Domain Partition
1.4 Element Mapping
1.5 Trial Functions
1.6 Global Energy Functional and Variational Equations
1.7 Implementation of ODE Solver
References
Chapter 2 Cracking Analysis of Fracture Mechanics by FEMOL
2.1 Introduction
2.2 Basic Description of FEMOL in Fracture Mechanics
2.3 Singular Line Element Mapping Technique in FEMOL
2.4 Application of FEMOL in Fracture Mechanics
2.5 SIF and Dimensionless COD Calculation
2.6 Conclusions
References
Chapter 3 3D Finite Bodies Analysis Containing Cracks Using FEMOL
3.1 Introduction
3.2 The Basic Processing Description of3D FEMOL
3.3 Basic Description of FEMOL in Fracture Mechanics
3.4 Singular Line Element Mapping Technique in FEMOL
3.5 Application of FEMOL in Fracture Mechanics ;
3.6 Conclusions
References
Chapter 4 First Order Reliability Method (FORM)
4.1 The First Order Reliability Method
4.2 Fatigue Reliability
4.3 Numerical Example to Illustrate Affect of POD
References
Chapter 5 Application to Weep Hole Cracks in C141 Wing
5.1 C141 Weep Hole Problem
5.2 Stress and SIF Analysis of C141 Weep Hole Configuration
5.3 Fit of Experimental and Neural Net POD Data
5.4 Fatigue Reliability Analysis of C141 Weep Hole Configuration
5.5 Estimates of Feasibility and Future Work
References
Chapter 6 Automated Ultrasonic Technique to Detect Fatigue Craeks
6.1 Introduction
6.2 Ultrasonic Technique
6.3 Equipment and Operator Interface
6.4 Validation Specimens
6.5 Field Demonstration
6.6 Laboratory Validation Tests
6.7 Blind Field Validation Tests
6.8 Summary and Discussion
References
Chapter 7 Techniques and Instrumentation for Structural Diagnostics
7.1 Introduction
7.2 Measurement Models
7.3 Laser-based Ultrasonics
7.4 Neural Networks
7.5 Integrated Microsensors
7.6 Probabilistic Fatigue Methods
7.7 Fatigue Reliability
7.8 Keynote Speakers
7.9 Direct Integration Method
7.10 Numerical Examples
7.11 Concluding Comment
References
Chapter 8 The Mechanic Behaviors of Rotating Disks
8.1 Elastic Analysis of Rotating Disks
8.2 Elastic-Plastic Analysis of Rotating Disk
References
Chapter 9 Large Deformation Analysis of Rotating Disk Using ,12
Deformation Theory
9.1 Theory Formation
9.2 Calculated Examples
9.3 The Bursting Speed of Rotating Disk
9.4 The Stress Distribution at Instability
9.5 The Elastic-Plastic Interface of Rotating Disk Using J2 Deformation Theory
9.6 Effect of Poisson's Ratio v and Hardening Modulus P
References
Chapter 10 The Burst Strength and Necking Behaviour of Rotating Disks
10.1 Introduction
10.2 Problem Formulation
10.3 Bifurcation Analysis
10.4 Behaviour of Imperfect Disks
10.5 Conclusions
10.6 Appendix: About Thin Rotating Ring
References
Chapter 11 Large Deformation Analysis for Rotating Disk Using J2
Flow Theory
Chapter 12 Calculated Analysis for Rotating Digk Using ABAQUS and ANSYS-
12.1 Analysis of Rotating Disk with Continuous Yield Material
12.2 Buckling and Bifurcation Analysis of Rotating Disk
12.3 Rotating Disk with Discontinuous Yield
12.4 ABAQUS Analysis of the True Minidisk
12.5 Instability Analysis of Minidisk Using ANSYS at Normal Temperature
References
Chapter 13 The Role of Discontinuous Yield of Material (Portevin-Le
Chatelier (PLC) Effect, Jerky Flow)
13.1 Jerky Flow, Discontinuous Yield Flow of Material
13.2 The Strain Rate Sensitivity (SRS) and Instability Criterion Description
13.3 Test Examples
13.4 Computer Simulation of PLC Effect
References