《空間非合作目標被動跟蹤技術與套用》是2015年1月出版的一本圖書,作者是廖瑛。
基本介紹
- 書名:空間非合作目標被動跟蹤技術與套用
- 作者:廖瑛
- ISBN:978-7-118-09567-8
- 出版時間:2015年1月
出版信息,內容簡介,目錄,
出版信息
書名空間非合作目標被動跟蹤技術與套用
書號978-7-118-09567-8
作者廖瑛
出版時間2015年1月
譯者
版次1版1次
開本16
裝幀精裝
出版基金國防科技圖書出版基金
頁數189
字數218
中圖分類TN953
叢書名
定價58.00
內容簡介
本書以天基空間目標監視系統為主要研究背景,對基於天基測角信息的空間非合作目標初軌確定方法、聯合定軌技術、抗差自適應跟蹤定軌方法以及空間目標編目維護方法、觀測衛星編隊控制技術等方面做了全面系統的論述。
本書理論性和系統性強,採用數學推導與仿真實驗相結合的思路,初步解決了空間目標天基僅測角跟蹤中若干關鍵問題,具有很強的實際套用背景,其中大部分內容是天基信息對抗與套用系統設計與仿真的實踐總結,是一部難得的關於天基空間目標監視建模與仿真方面理論研究和實際套用的科研專著。本書的主要讀者對象為從事天基信息對抗與套用系統設計與仿真的科研人員,同時也可作為高等院校相關專業研究生和科研學者的參考書。
目錄
第1章概論1
1.1天基空間目標監視技術概述1
1.2天基空間目標監視系統發展及現狀3
1.2.1美、俄地基空間目標監視系統3
1.2.2天基空間目標監視系統5
1.2.3美國空間目標監視系統編目更新與維護7
1.2.4空間目標抵近觀測和跟飛編隊套用8
1.2.5國內空間目標監視研究現狀9
1.3空間目標跟蹤定軌相關關鍵技術進展10
1.3.1空間目標的初軌確定技術10
1.3.2空間目標的非線性跟蹤濾波11
1.3.3空間目標的聯合定軌技術13
1.3.4抗差估計理論在跟蹤定軌中的套用現狀14
參考文獻15
第2章基於測角信息的天基監視跟蹤系統18
2.1天基無源跟蹤系統信息處理18
2.1.1天基光學監視系統的信息處理18
2.1.2非合作輻射源目標探測系統的信息處理19
2.2空間非合作目標天基可探測性分析20
2.2.1天基光電感測器的可見性20
2.2.2非合作輻射源目標探測系統的可探測性22
2.3空間目標天基僅測角跟蹤模型23
2.3.1坐標系定義及轉換23
2.3.2空間目標運動描述25
2.3.3天基僅測角跟蹤的觀測方程26
2.4觀測數據預處理方法26
2.4.1物理量綱復原27
2.4.2測角數據跳變消除27
2.4.3觀測數據異常值處理27
2.4.4觀測噪聲平滑28
參考文獻29
第3章基於天基測角信息的初軌確定方法30
3.1天基僅測角短弧初定軌的疊代初值選取30
3.1.1天基僅測角初定軌的平凡解30
3.1.2考慮J2項攝動的簡單疊代法31
3.1.3基於經典高斯法的信賴域方法32
3.1.4仿真實驗與分析34
3.2基於連續同倫算法的天基僅測角初定軌方法37
3.2.1拉普拉斯改進法37
3.2.2考慮攝動影響的單位矢量法38
3.2.3連續同倫算法基本理論40
3.2.4基於同倫路徑跟蹤算法的觀測條件方程組求解41
3.2.5基於弧長參數的同倫路徑跟蹤改進算法42
3.2.6雙星立體觀測下空間目標的初軌確定方法44
3.2.7仿真算例與分析49
參考文獻53
第4章基於天基僅測角信息的跟蹤濾波算法55
4.1天基僅測角跟蹤的可觀測性與誤差特性55
4.1.1非線性控制系統可觀性定理55
4.1.2一般條件下相對動力學方程56
4.1.3單星對空間目標僅測角跟蹤可觀測性分析58
4.1.4跟蹤濾波誤差下限與系統可觀測度59
4.2天基僅測角跟蹤自主定軌虧秩分析65
4.2.1單星對空間目標僅測角跟蹤自主定軌虧秩分析65
4.2.2雙星編隊對空間目標僅測角跟蹤自主定軌虧秩分析68
4.2.3自主定軌虧秩問題的改進策略71
4.3單星對空間目標僅測角跟蹤濾波算法72
4.3.1單星對空間目標僅測角跟蹤模型72
4.3.2疊代UKF算法的推導74
4.3.3仿真實驗與分析78
4.4基於雙星編隊的天地聯合定軌方法84
4.4.1空間非合作目標的天地聯合定軌模型84
4.4.2平方根UKF算法及改進86
4.4.3仿真實驗與分析88
參考文獻90
第5章
基於抗差估計的天基僅測角跟蹤濾波算法93
基於抗差估計的天基僅測角跟蹤濾波算法93
5.1適於空間目標跟蹤定軌的抗差估計理論93
5.1.1抗差估計基本概念93
5.1.2抗差最小二乘估計95
5.1.3相關觀測抗差估計方法98
5.2基於抗差自適應濾波的跟蹤濾波算法99
5.2.1抗差自適應EKF算法99
5.2.2帶時變噪聲統計特性估計器的抗差自適應UKF算法110
參考文獻126
第6章
空間目標的雙行軌道根數生成方法128
空間目標的雙行軌道根數生成方法128
6.1雙行軌道根數和SGP4模型介紹128
6.2空間目標的TLE擬合算法129
6.2.1非線性最小二乘估計129
6.2.2無奇異軌道根數及偏導數推導130
6.2.3仿真算例與分析135
6.3面向天基僅測角跟蹤套用的TLE生成算法137
6.3.1非線性最小二乘遞推算法138
6.3.2仿真算例與分析140
參考文獻142
第7章
空間目標的逼近技術143
空間目標的逼近技術143
7.1空間目標的快速軌道逼近技術143
7.1.1相對動力學方程143
7.1.2設定時間內的快速軌道逼近方法144
7.1.3基於微分改正的攝動修正方法146
7.1.4仿真算例與分析147
7.2軌道交會控制研究149
7.2.1雙衝量Lambert交會算法150
7.2.2考慮觀測的雙衝量交會153
7.2.3多衝量軌道交會156
參考文獻157
第8章
觀測衛星編隊控制問題研究158
觀測衛星編隊控制問題研究158
8.1觀測衛星編隊控制問題分析158
8.1.1衛星編隊控制問題假設158
8.1.2絕對軌道參數預報偏差影響分析159
8.1.3控制輸出脈寬調製161
8.2觀測衛星編隊構形的李雅普諾夫控制研究162
8.2.1構形捕獲與重構方案162
8.2.2跟飛編隊李雅普諾夫控制律163
8.2.3仿真算例與分析165
參考文獻174
第9章
觀測衛星編隊防碰撞問題研究175
觀測衛星編隊防碰撞問題研究175
9.1衛星編隊碰撞因素分析175
9.1.1編隊安全的相關定義175
9.1.2碰撞影響因素分析177
9.1.3碰撞影響因素解決策略180
9.2衛星編隊碰撞預警算法研究180
9.2.1碰撞預警策略180
9.2.2變尺度直接逼近算法183
9.2.3仿真算例與分析185
參考文獻187
Chapter 1Introduction1
1.1Summary of Space-Based Surveillance Technology of Space Target1
1.2Situation and Development of Space-Based Surveillance System of Space Target3
1.2.1Ground Surveillance System of Space Target in America and Russia3
1.2.2Space-Based Surveillance System of Space Target5
1.2.3Catalogue Update and Maintenance of Space Target in American Surveillance System7
1.2.4Approaching Observation and Measurement Based on Satellite Format Flying8
1.2.5Current Situation of Space Target Surveillance in China9
1.3Key Technology Development of Space Target Tracking and Orbit
Determination10
1.3.1Method of Initial Orbit Determination of Space TargetW10
1.3.2Orbit Determination of Space Target Using Nonlinear Filter 11
1.3.3Method of Combined Orbit Determination of Space Target 13
1.3.4Situation of Robust Estimation for Target Tracking and Orbit Determination14
References15
Chapter 2Space-Based Surveillance System of Space Target with Bearing-onlyInformation18
2.1Information Processing of Space-BasedSurveillance System18
2.1.1Information Processing of Space-Based Optical Surveillance System18
2.1.2Information Processing of Space-Based Surveillance System-Based on Radiation of Non-Cooperative Space Target19
2.2Space-Based Observability Analysis of Non-Cooperative
Space Target 20
1.1Summary of Space-Based Surveillance Technology of Space Target1
1.2Situation and Development of Space-Based Surveillance System of Space Target3
1.2.1Ground Surveillance System of Space Target in America and Russia3
1.2.2Space-Based Surveillance System of Space Target5
1.2.3Catalogue Update and Maintenance of Space Target in American Surveillance System7
1.2.4Approaching Observation and Measurement Based on Satellite Format Flying8
1.2.5Current Situation of Space Target Surveillance in China9
1.3Key Technology Development of Space Target Tracking and Orbit
Determination10
1.3.1Method of Initial Orbit Determination of Space TargetW10
1.3.2Orbit Determination of Space Target Using Nonlinear Filter 11
1.3.3Method of Combined Orbit Determination of Space Target 13
1.3.4Situation of Robust Estimation for Target Tracking and Orbit Determination14
References15
Chapter 2Space-Based Surveillance System of Space Target with Bearing-onlyInformation18
2.1Information Processing of Space-BasedSurveillance System18
2.1.1Information Processing of Space-Based Optical Surveillance System18
2.1.2Information Processing of Space-Based Surveillance System-Based on Radiation of Non-Cooperative Space Target19
2.2Space-Based Observability Analysis of Non-Cooperative
Space Target 20
2.2.1Visibility of Space-Based Photoelectric Sensor20
2.2.2Space-Based Observability Based on Radiation of Non-Cooperative Space Target22
2.3Space-Based Observation Model of Space Target Based on Bearing-only Tracking23
2.3.1Coordinate System and Its Conversion23
2.3.2Motion Equation of Space Target25
2.3.3Observation Equation of Bearing-only Tracking for Space Target26
2.4Observation Data Preprocessing Methods26
2.4.1Reversion of Physical Dimension27
2.4.2Mend ofAngle Measurement Data Leap27
2.4.3Outliers Processing27
2.4.4De-Noising and Smoothing of Observations Data28
References29
Chapter 3Initial Orbit Determination Methods with Space-Based Bearing-only Information30
3.1Methods of Initial Values Selection in Short-Arc Initial Orbit Determination30
3.1.1Normal Solution of Initial Orbit Determination Based on Space-Based Bearing-only Information 30
3.1.2Simple Initial Orbit Iteration Determination with Perturbation J231
3.1.3Trust Region Algorithm Based on Classical Gauss
Method32
3.1.4Simulation Experiment and Analysis34
3.2Initial Orbit Determination with Space-Based Bearing-only Information Based on Homotopy Continuation Theory 37
3.2.1Improved Laplace Method37
3.2.2Unit Vector Method with Orbit Perturbation38
3.2.3Theory of Homotopy Tracking Algorithm40
3.2.4Solution of Observation Equation Based on Homotopy Track Algorithm41
3.2.5Improved Homotopy Track Algorithm Based on Arc Length Parameters42
3.2.6Initial Orbit Determination of Space Target with Double Satellites Tracking44
3.2.7Simulation Experiment and Analysis49References53
Chapter 4Filter Algorithm for Orbit Determination with S
pace-Based Bearings-only Tracking Information55
4.1Observability and Error Charactristic Analysis of Space-Based Bearings-only Tracking55
4.1.1Observability Theorem of Nonlinear Control SystemWHJY55
4.1.2Relative Dynamic Equation under General Conditions56
4.1.3Observability Analysis of Space Target with Single Satellite Bearings-only Tracking58
2.2.2Space-Based Observability Based on Radiation of Non-Cooperative Space Target22
2.3Space-Based Observation Model of Space Target Based on Bearing-only Tracking23
2.3.1Coordinate System and Its Conversion23
2.3.2Motion Equation of Space Target25
2.3.3Observation Equation of Bearing-only Tracking for Space Target26
2.4Observation Data Preprocessing Methods26
2.4.1Reversion of Physical Dimension27
2.4.2Mend ofAngle Measurement Data Leap27
2.4.3Outliers Processing27
2.4.4De-Noising and Smoothing of Observations Data28
References29
Chapter 3Initial Orbit Determination Methods with Space-Based Bearing-only Information30
3.1Methods of Initial Values Selection in Short-Arc Initial Orbit Determination30
3.1.1Normal Solution of Initial Orbit Determination Based on Space-Based Bearing-only Information 30
3.1.2Simple Initial Orbit Iteration Determination with Perturbation J231
3.1.3Trust Region Algorithm Based on Classical Gauss
Method32
3.1.4Simulation Experiment and Analysis34
3.2Initial Orbit Determination with Space-Based Bearing-only Information Based on Homotopy Continuation Theory 37
3.2.1Improved Laplace Method37
3.2.2Unit Vector Method with Orbit Perturbation38
3.2.3Theory of Homotopy Tracking Algorithm40
3.2.4Solution of Observation Equation Based on Homotopy Track Algorithm41
3.2.5Improved Homotopy Track Algorithm Based on Arc Length Parameters42
3.2.6Initial Orbit Determination of Space Target with Double Satellites Tracking44
3.2.7Simulation Experiment and Analysis49References53
Chapter 4Filter Algorithm for Orbit Determination with S
pace-Based Bearings-only Tracking Information55
4.1Observability and Error Charactristic Analysis of Space-Based Bearings-only Tracking55
4.1.1Observability Theorem of Nonlinear Control SystemWHJY55
4.1.2Relative Dynamic Equation under General Conditions56
4.1.3Observability Analysis of Space Target with Single Satellite Bearings-only Tracking58
4.1.4Tracking Error Lower Limit of Filter and System Observability59
4.2Rank Deficit Analysis of Orbit Determination Based on Space-Based Bearings-only Information65
4.2.1Rank Deficit Analysis of Autonomous Orbit Determination of Space Target Based on Single SatelliteBearings-only Tracking65
4.2.2Rank Deficit Analysis of Autonomous Orbit Determination of Space Target Based on Double SatellitesBearings-only Tracking68
4.2.3Improved Solution of Rank Deficit of Autonomous Orbit
Determination of Space Target71
4.3Filter Algorithm for Orbit Determination Based on Single Satellite Bearings-only Tracking72
4.3.1Observation Equation of Single Satellite Bearings-only Tracking72
4.3.2Derivation of Iterative UKF74
4.3.3Simulation Experiment and Analysis78
4.4Combined Orbit Determination Methods Based on Two-Satellite Formation and Ground Tracking84
4.4.1Combined Orbit Determination Model of Non-Cooperative
Space Target Based on Ground Tracking and
Space-Based Tracking84
4.4.2The Square RootUKF and Its Improvement86
4.4.3Simulation Experiment and Analysis88
References90
Chapter 5Robust Filter Algorithm for Orbit Determination with Space-Based Bearings-only Tracking Information 93
5.1Robust Estimation Theory for Space Target Tracking93
5.1.1Basic Concept of Robust Estimation93
5.1.2Robust Least Squares Estimation95
5.1.3Robust Estimation with Relevant Observations98
5.2Orbit Determination Algorithm Based on Robust Adaptive Filter 99
5.2.1Robust Adaptive Extended Kalman Filter 99
5.2.2Robust Adaptive UKF with Time-Varying Statistical
Characteristic of Noise110
References126
Chapter 6Fitting Method of TLE of Space Target128
6.1Introduction of TLE and SGP4 Model128
6.2Fitting Method of TLE of Space Target129
6.2.1Nonlinear Least Squares Estimation129
6.2.2Derivation of Non-Singular Orbit and Its Partial Derivative130
6.2.3Simulation Experiment and Analysis135
6.3Generation Algorithm of TLE of Space Target
Based on Space-Based Bearing-only Tracking137
6.3.1Iterative Algorithm of Nonlinear Least Squares Estimation138
6.3.2Simulation Experiment and Analysis140
References142
Chapter 7Technology of Approach to Space Target143
7.1Fast Approach to Space Target143
7.1.1Relative Dynamic Equation143
7.1.2Fast Approach Method within Setting Time144
7.1.3Perturbed Improvement Method Based on Differential
Correction146
4.2Rank Deficit Analysis of Orbit Determination Based on Space-Based Bearings-only Information65
4.2.1Rank Deficit Analysis of Autonomous Orbit Determination of Space Target Based on Single SatelliteBearings-only Tracking65
4.2.2Rank Deficit Analysis of Autonomous Orbit Determination of Space Target Based on Double SatellitesBearings-only Tracking68
4.2.3Improved Solution of Rank Deficit of Autonomous Orbit
Determination of Space Target71
4.3Filter Algorithm for Orbit Determination Based on Single Satellite Bearings-only Tracking72
4.3.1Observation Equation of Single Satellite Bearings-only Tracking72
4.3.2Derivation of Iterative UKF74
4.3.3Simulation Experiment and Analysis78
4.4Combined Orbit Determination Methods Based on Two-Satellite Formation and Ground Tracking84
4.4.1Combined Orbit Determination Model of Non-Cooperative
Space Target Based on Ground Tracking and
Space-Based Tracking84
4.4.2The Square RootUKF and Its Improvement86
4.4.3Simulation Experiment and Analysis88
References90
Chapter 5Robust Filter Algorithm for Orbit Determination with Space-Based Bearings-only Tracking Information 93
5.1Robust Estimation Theory for Space Target Tracking93
5.1.1Basic Concept of Robust Estimation93
5.1.2Robust Least Squares Estimation95
5.1.3Robust Estimation with Relevant Observations98
5.2Orbit Determination Algorithm Based on Robust Adaptive Filter 99
5.2.1Robust Adaptive Extended Kalman Filter 99
5.2.2Robust Adaptive UKF with Time-Varying Statistical
Characteristic of Noise110
References126
Chapter 6Fitting Method of TLE of Space Target128
6.1Introduction of TLE and SGP4 Model128
6.2Fitting Method of TLE of Space Target129
6.2.1Nonlinear Least Squares Estimation129
6.2.2Derivation of Non-Singular Orbit and Its Partial Derivative130
6.2.3Simulation Experiment and Analysis135
6.3Generation Algorithm of TLE of Space Target
Based on Space-Based Bearing-only Tracking137
6.3.1Iterative Algorithm of Nonlinear Least Squares Estimation138
6.3.2Simulation Experiment and Analysis140
References142
Chapter 7Technology of Approach to Space Target143
7.1Fast Approach to Space Target143
7.1.1Relative Dynamic Equation143
7.1.2Fast Approach Method within Setting Time144
7.1.3Perturbed Improvement Method Based on Differential
Correction146
7.1.4Simulation Experiment and Analysis147
7.2Research on Orbit Rendezvous Control149
7.2.1Lambert Algorithm of Orbit Rendezvous Based on Double Pulses150
7.2.2Orbit Rendezvous Based on Double Pulses 153
7.2.3Orbit Rendezvous Based on Multiple Pulses156
References157
Chapter 8Research on Formation Flying Control of Tracking Satellites158
8.1Analysis of Formation Flying Control of Tracking Satellites 158
8.1.1Assumption of Formation Flying Control of Tracking Satellites158
8.1.2Deviation Analysis of Satellite Absolute Orbit Prediction159
8.1.3Pulse Width Regulation of Control Output161
8.2Research on Lyapunov Control of Formation Flying of Tracking Satellites162
8.2.1Formation Capture and Reconstruction Scheme162
8.2.2Lyapunov Control Law of Formation Flying of Tracking Satellites163
8.2.3Simulation Experiment and Analysis165
References174
Chapter 9Research on Collision Avoidance of Satellite Formation Flying175
9.1Collision Factors Analysis of Satellite Formation Flying175
7.2Research on Orbit Rendezvous Control149
7.2.1Lambert Algorithm of Orbit Rendezvous Based on Double Pulses150
7.2.2Orbit Rendezvous Based on Double Pulses 153
7.2.3Orbit Rendezvous Based on Multiple Pulses156
References157
Chapter 8Research on Formation Flying Control of Tracking Satellites158
8.1Analysis of Formation Flying Control of Tracking Satellites 158
8.1.1Assumption of Formation Flying Control of Tracking Satellites158
8.1.2Deviation Analysis of Satellite Absolute Orbit Prediction159
8.1.3Pulse Width Regulation of Control Output161
8.2Research on Lyapunov Control of Formation Flying of Tracking Satellites162
8.2.1Formation Capture and Reconstruction Scheme162
8.2.2Lyapunov Control Law of Formation Flying of Tracking Satellites163
8.2.3Simulation Experiment and Analysis165
References174
Chapter 9Research on Collision Avoidance of Satellite Formation Flying175
9.1Collision Factors Analysis of Satellite Formation Flying175
9.1.1Relevant Security Definition of Satellite Formation Flying175
9.1.2Collision Factors Analysis177
9.1.3Solution of Collision Avoidance180
9.2Research on Warning Algorithm of Satellite Formation Flying Collision 180
9.2.1Warning Method of Satellite Formation Flying Collision180
9.2.2Direct Approaching Algorithm with Variable Scale183
9.2.3Simulation Experiment and Analysis185
References187"
9.1.2Collision Factors Analysis177
9.1.3Solution of Collision Avoidance180
9.2Research on Warning Algorithm of Satellite Formation Flying Collision 180
9.2.1Warning Method of Satellite Formation Flying Collision180
9.2.2Direct Approaching Algorithm with Variable Scale183
9.2.3Simulation Experiment and Analysis185
References187"