內容簡介
面向大數據,本書提出數據場、雲模型、挖掘視角、李德仁法等空間數據挖掘的新方法,揭示在不同層次“規則+例外”的挖掘機理,總結數據源的內容和管理,研究遙感圖像的大規模智慧型檢索、地物分類和變化檢測,時空分布的視頻數據挖掘,夜光遙感圖像挖掘,滑坡監測數據挖掘,以及GIS數據的關聯規則、分布規則、決策規則和聚類挖掘,成功用於“一帶一路”沿線的城市發展評估、國際熱點區域的人道主義災難評估、公共安全事件的監測預警、無人機視頻的動態目標跟蹤、火車車輪的形變檢測、土地利用的分類與變化檢測、滑坡監測的數據挖掘、銀行選址的預測評估、區域經濟分析等領域,研製了空間數據挖掘系統SDMsystem,實現了從空間大數據向大價值的實質轉換。
圖書目錄
“地球觀測與導航技術叢書”編寫說明
序一
序二
序三
序四
第三版前言
第二版前言
第一版前言
第1章 緒論 1
1.1 空間數據挖掘的由來 1
1.2 空間數據挖掘的價值 8
1.3 空間數據挖掘的難題 10
1.4 本書的內容和組織結構 13
第2章 空間數據挖掘基礎 16
2.1 基本定義和性質 16
2.2 空間數據挖掘金字塔 19
2.3 空間數據挖掘視角 23
2.4 空間數據挖掘的知識類型 30
2.5 空間知識的表達 33
2.6 空間數據挖掘與相關學科的關係 35
第3章 空間數據挖掘的數據源 39
3.1 空間數據的內容和特性 39
3.2 空間數據獲取 42
3.3 空間數據結構 44
3.4 空間數據模型 47
3.5 空間數據的組織和管理 52
3.6 國家空間數據基礎設施 57
3.7 中國國家空間數據基礎設施 62
第4章 空間數據清理 71
4.1 空間數據的污染問題 71
4.2 空間數據清理的基本內容 76
4.3 空間觀測數據的清理 78
4.4 遙感圖像的清理 94
4.5 基於DHP法的空間數據選擇 107
第5章 空間數據挖掘可用的理論方法 112
5.1 確定集合論 112
5.2 擴展集合論 118
5.3 仿生學方法 122
5.4 知識圖譜 127
5.5 可視化 127
5.6 空間數據挖掘系統 128
第6章 數據場 132
6.1 數據輻射 132
6.2 數據場的概念和性質 135
6.3 數據場的場強和勢 139
第7章 雲模型 147
7.1 隨機性和模糊性 147
7.2 雲模型的概念 148
7.3 雲模型的類型 151
7.4 雲發生器 155
7.5 雲變換 161
7.6 基於雲模型的不確定推理 163
第8章 地學粗空間和概念格 166
8.1 地學粗空間的內涵 166
8.2 地學粗空間在地球空間信息學的外延 176
8.3 概念格及其性質 178
8.4 概念格的構建 185
第9章 遙感圖像智慧型檢索 196
9.1 圖像檢索特徵 196
9.2 遙感圖像統計檢索 199
9.3 遙感圖像深度檢索 206
第10章 遙感圖像分類 212
10.1 基於歸納學習和貝葉斯方法的圖像分類 212
10.2 基於雲模型的圖像分類 216
10.3 基於粗神經網路的圖像分類 218
10.4 基於地學粗空間的專題提取 219
第11章 遙感圖像變化檢測 221
11.1 變化檢測的方法體系 221
11.2 面向對象機器學習的遙感圖像變化檢測 224
11.3 顧及空間特徵的時間序列變化檢測 230
11.4 面向無人機視頻的動態目標跟蹤 237
第12章 時空分布的視頻數據挖掘 244
12.1 視頻數據智慧型壓縮與雲存儲 244
12.2 基於內容的視頻數據檢索 245
12.3 時空視頻數據挖掘 247
12.4 視頻人臉超解析度識別與表情挖掘 249
12.5 基於長程背景字典的衛星視頻編碼 262
第13章 夜光遙感圖像挖掘 267
13.1 夜光遙感圖像挖掘的必要性 267
13.2 中國區域經濟分析 268
13.3 “一帶一路”城市發展評估 271
13.4 人道主義災難評估 274
第14章 寶塔滑坡的監測數據挖掘 279
14.1 寶塔滑坡 279
14.2 滑坡監測數據挖掘的可行性 280
14.3 寶塔滑坡形變監測數據挖掘的視角 283
14.4 同點異時同向的視角挖掘 287
14.5 異點同時同向的視角挖掘 293
14.6 異點異時同向的視角挖掘 298
14.7 基於數據場的例外挖掘 301
14.8 寶塔滑坡形變監測的知識及討論 305
第15章 GIS數據挖掘 311
15.1 空間關聯規則挖掘 311
15.2 基於歸納學習挖掘空間分布規則 320
15.3 基於粗集發現決策知識 324
15.4 空間聚類知識挖掘 331
參考文獻 342
後記 352
Contents
Foreword on the book series
Foreword I
Foreword II
Foreword III
Foreword IV
Preface of the 3rd edition
Preface of the 2nd edition
Preface of the 1st edition
Chapter 1 Introduction 1
1.1 The origin of spatial data mining 1
1.2 The value from spatial data mining 8
1.3 Problems in spatial data mining 10
1.4 Content and organization of the book 13
Chapter 2 Principles of Spatial Data Mining 16
2.1 Fundamental definitions and properties 16
2.2 Spatial data mining pyramid 19
2.3 Spatial data mining views 23
2.4 Knowledge form of spatial data mining 30
2.5 Representation of spatial knowledge 33
2.6 Relationship between spatial data mining and related disciplines 35
Chapter 3 Data Sources for Spatial Data Mining 39
3.1 Contents and characteristics of spatial data 39
3.2 Spatial data acquisition 42
3.3 Spatial data structure 44
3.4 Spatial data model 47
3.5 Organization and management of spatial data 52
3.6 National Spatial Data Infrastructure 57
3.7 Chinese National Spatial Data Infrastructure 62
3.8 From spatial data infrastructure to big data 66
Chapter 4 Spatial Data Cleaning 71
4.1 Pollution of spatial data 71
4.2 Basic contents of spatial data cleaning 76
4.3 Cleaning spatial observed data 78
4.4 Cleaning remote sensing images 94
4.5 Spatial data selection with DHPmethod 107
Chapter 5 Theoretical Methods Available for Spatial Data Mining 112
5.1 Crisp set theory 112
5.2 Extended set theory 118
5.3 Bionics 122
5.4 Knowledge Map 127
5.5 Visualization 127
5.6 Spatial data mining system 128
Chapter 6 Data Field 132
6.1 Data radiation 132
6.2 Concept and nature of the data field 135
6.3 Field strength and potential of the data field 139
Chapter 7 Cloud Model 147
7.1 Randomness and fuzziness 147
7.2 Concept of the cloud model 148
7.3 Types of cloud model 151
7.4 Cloud generator 155
7.5 Cloud transformation 161
7.6 Uncertain reasoning with cloud model 163
Chapter 8 Geo-rough space and conceptual lattice 166
8.1 The connotation of geo-rough space 166
8.2 Extension of geo-rough space in geoscience 176
8.3 Concept lattice and its nature 178
8.4 Construction of concept lattice 185
Chapter 9 Intelligent Retrieval for Remote Sensing Image 196
9.1 Image retrieval features 196
9.2 Remote sensing image statistical search 199
9.3 Remote sensing image deep retrieval 206
Chapter 10 Classification for Remote Sensing Image 212
10.1 Image classification based on inductive learning and Bayesian methods 212
10.2 Image classification based on cloud model 216
10.3 Image classification based on rough neural network 218
10.4 Thematic extraction based on geo-rough space 219
Chapter 11 Change Detection for Remote Sensing Image 221
11.1 Methodology for change detection 221
11.2 Image change detection with object-oriented machine learning 224
11.3 Sequential change detection under spatial characteristics 230
11.4 Dynamic target tracking based on drone video 237
Chapter 12 Video Data Mining in Time and Space Distribution 244
12.1 Smart compression and cloud storage for video data 244
12.2 Content-based video data retrieval 245
12.3 Spatiotemporal video data mining 247
12.4 Video face super-resolution recognition and expression mining 249
12.5 Satellite video coding based on long-range background dictionary 262
Chapter 13 Remote Sensing Nightlight Image Mining 267
13.1 Necessity of remote sensing nightlight image mining 267
13.2 China regional economic analysis 268
13.3 “One Belt, One Road” urban development assessment 271
13.4 Humanitarian disaster assessment 274
Chapter 14 Monitoring Data Mining of Baota Landslide 279
14.1 Baota Landslide 279
14.2 Feasibility of data mining for landslide monitoring 280
14.3 Mining views for Baota landslide deformation monitoring data 283
14.4 Mining with the same point, different time, the same direction 287
14.5 Mining with different point, the same time, the same direction 293
14.6 Mining with different point, different time, the same direction 298
14.7 Data field based exception mining 301
14.8 Knowledge and discussion on the deformation monitoring of Baota landslide 305
Chapter 15 GIS Data Mining 311
15.1 Mining spatial association rules 311
15.2 Rules for spatial distribution based on inductive learning 320
15.3 Finding decisions based on rough sets 324
15.4 Spatial clustering knowledge discovery 331
References 342
Postscript 352