程正順

程正順,男,1987年7月生,博士,上海交通大學船舶海洋與建築工程學院長聘教軌副教授、博士生導師。

基本介紹

  • 中文名:程正順
  • 畢業院校:挪威科技大學
  • 學位/學歷:博士
  • 專業方向:海洋工程
  • 任職院校:上海交通大船舶海洋與建築工程學院
人物經歷,教育經歷,工作經歷,學術兼職,研究方向,科研項目,學術成果,外文期刊,期刊論文,會議論文,榮譽獎勵,

人物經歷

教育經歷

2013.06-2016.06 挪威科技大學 海洋工程 博士
2006.09-2010.07 上海交通大學 船舶與海洋工程 本科

工作經歷

2019.05-至今 上海交通大學 船舶與海洋工程系 長聘教軌副教授
2016.06-2019.04 挪威科技大學 海洋工程系 博士後
2015.08-2015.10 丹麥技術大學 風能系 訪問學者

學術兼職

SCI期刊Energies特刊客座主編 2018-2019
15份國際SCI期刊審稿人,包括Marine Structures, Ocean Engineering, Renewable Energy, Applied Energy,Engineering Structures等

研究方向

海洋結構物多物理場耦合動力分析、隨機動力分析、結構完整性可靠性與不確定性評估
海上風能技術(固定式/浮式,水平軸/垂直軸,水動-氣動-控制-結構彈性耦合等)
浮橋等大型浮體動力回響分析與安全性評估

科研項目

[1]2019-2022 上海交通大學長聘教軌助理教授科研啟動項目,經費200萬,項目負責人
[2]2019-2020 海洋工程國家重點實驗室自主研究課題,時空非均勻環境作用下超大型浮體動力回響特性研
究,項目編號GKZD010075,經費12萬,項目負責人
[3]2017-2020天津大學水利工程仿真與安全國家重點實驗室開放課題,浮式垂直軸風力機動力回響特性研
究,項目編號HESS-1710,經費5萬,項目負責人
[4]2016-2019 挪威公共道路管理局資助項目,Characteristic environmental loads and load
effects for ULS and ALS design check of floating bridges,經費831萬挪威克朗,技術
負責人
[5]2013-2016 歐盟FP7和挪威研究基金委聯合資助項目,Dynamic modelling and analysis of a
floating wind turbine concept, and comparison with laboratory test data or
field measurements,經費250萬挪威克朗,技術負責人

學術成果

外文期刊

[1]Cheng Z*, Gao Z, Moan T. Numerical modeling and dynamic response analysis of
a floating bridge subjected to wind, wave and current loads. Journal of
Offshore Mechanics and Arctic Engineering, 2019, 141 (1): 011601
[2]Cheng Z*, Svangstu E, Gao Z, Moan T. Field measurements of inhomogeneous wave
conditions in Bj?rnafjorden. Journal of Waterway, Port, Coastal, and Ocean
Engineering, 2019, 145(1):05018008
[3]Cheng Z, Wen TR, Ong MC, Wang K*. Power performance and dynamic responses of
a combined floating vertical axis wind turbine and wave energy converter
concept. Energy, 2019, 171: 190-204
[4]Zhao Y*, Cheng Z, Gao Z, Sandvik PC, Moan T. Numerical study on the
feasibility of offshore single blade installation by floating crane vessels.
Marine Structures, 2019, 64: 442-462
[5]Zhao Y, Cheng Z*, Sandvik PC, Gao Z, Moan T, Buren, EV. Numerical modeling
and analysis of the dynamic motion response of an offshore wind turbine blade
during installation by a jack-up crane vessel. Ocean Engineering, 2018,
165:353-364.
[6]Cheng Z*, Gao Z, Moan T. Hydrodynamic load modeling and analysis of a
floating bridge inhomogeneous wave conditions. Marine Structures, 2018, 59:
122-141.
[7]Cheng Z*, Gao Z, Moan T. Wave load effect analysis of a floating bridge in a
fjord considering inhomogeneous wave conditions. Engineering Structures,
2018, 163:197-214.
[8]Zhao Y, Cheng Z*, Sandvik PC, Gao Z, Moan T. An integrated dynamic analysis
method for simulating installation of single blades for wind turbines. Ocean
Engineering, 2018, 152:72-88.
[9]Tu Y, Cheng Z*, Muskulus M. Global slamming forces on Jacket structures for
offshore wind applications. Marine Structures, 2018, 58: 53-72.
[10]Cheng Z*, Wang K, Ong MC. Assessment of performance enhancement of a semi-
submersible vertical axis wind turbine with an optimized Darrieus rotor.
Engineering Structures, 2018, 167: 227-240.
[11]Wen TR, Wang K*, Cheng Z, Ong MC. Spar-type vertical axis wind turbine in
moderate water depth: a feasibility study. Energies, 2018, 11(3), 555.
[12]Li L, Cheng Z, Yuan Z*, Gao Y. Short-term extreme response and fatigue
damage of an integrated wind, wave and tidal energy system. Renewable
Energy, 2018, 126:617-629.
[13]Tu Y, Cheng Z*, Muskulus M. A global slamming force model on offshore wind
Jacket structures. Marine Structures, 2018, 60:201-217.
[14]Tu Y, Cheng Z, Muskulus M. A review of slamming load application to offshore
wind turbines from an integrated perspective. Energy Procedia, 2017,
137:346-357
[15]Koppenol B, Cheng Z*, Gao Z, Ferreira CS, Moan T. A comparison of two fully
coupled codes for integrated dynamic analysis of floating vertical axis wind
turbines. Energy Procedia, 2017, 137:282-290.
[16]Cheng Z*, Madsen HA, Gao Z, Moan T. A fully coupled method for numerical
modeling and dynamic analysis of floating vertical axis wind turbines.
Renewable Energy, 2017, 107: 604-619.
[17]Cheng Z*, Madsen HA, Chai W, Gao Z, Moan T. A comparison of extreme
structural responses and fatigue damage of semi-submersible type floating
horizontal and vertical axis wind turbines. Renewable Energy, 2017, 108:207-
219.
[18]Cheng Z*, Zhang P. Characteristic aerodynamic loads and load effects on the
dynamics of a floating vertical axis wind turbine. Transactions of Tianjin
University, 2017, 23(6):555-561.
[19]Han Y, Le C, Ding H, Cheng Z*, Zhang P. Stability and dynamic response
analysis of a submerged Tension Leg Platform for offshore wind turbines.
Ocean Engineering, 2017, 129:68-82.
[20]Cheng Z*, Madsen HA, Gao Z, Moan T. Effect of the number of blades on the
dynamics of floating straight-bladed vertical axis wind turbines. Renewable
Energy, 2017, 101:1285-1298.
[21]Cheng Z*, Madsen HA, Gao Z, Moan T. Numerical study on aerodynamic damping
of floating vertical axis wind turbines. Journal of Physics: Conference
Series, 2016, 753(10): 102001.
[22]Cheng Z*, Madsen HA, Gao Z, Moan T. Aerodynamic modeling of floating
vertical axis wind turbines using the actuator cylinder method. Energy
Procedia, 2016, 94:531-543.
[23]Cheng Z*, Wang K, Gao Z, Moan T. A comparative study on dynamic responses of
spar-type floating horizontal and vertical axis wind turbines. Wind Energy,
2017, 20(2):305-323.
[24]Cheng Z*, Wang K, Gao Z, Moan T. Dynamic response analysis of three floating
wind turbine concepts with a two-bladed Darrieus rotor. Journal of Ocean and
Wind Energy, 2015, 2: 213-222.
[25]Cheng Z, Yang J, Hu Z, Xiao L. Frequency/time domain modeling of a direct
drive point absorber wave energy converter. Science China-Physics Mechanics
& Astronomy, 2014, 57(2): 311-320.

期刊論文

[1]程正順, 楊建民, 胡志強, 肖龍飛. 直接驅動浮子式波浪能轉換裝置頻域模擬研究. 太陽能學報,
2014, 35(7):1304-1310.
[2]白治寧, 肖龍飛, 程正順, 賴智萌. 深吃水半潛式平台渦激運動回響模型實驗研究. 船舶力學, 2014,
18(4): 377-384
[3]程正順, 胡志強, 楊建民. 半潛式平台結構抗撞性能研究. 振動與衝擊, 2012, 31(4): 38-43.

會議論文

[1]Cheng Z, Gao Z, Moan T. Extreme response analysis of an end-anchored floating
bridge. Proceedings of the 38th International Conference on Ocean, Offshore
and Arctic Engineering (OMAE2019), 2019, Glasgow, Scotland, UK.
[2]Zhao Y, Cheng Z, Gao Z, Moan T. Effect of foundation modeling of a jack-up
crane vessel on the dynamic motion response of an offshore wind turbine blade
during installation. Proceedings of the ASME 2018 International Offshore Wind
Technical Conference (IOWTC2018-1010), 2018, San Francisco, USA.
[3]Cheng Z, Gao Z, Moan T. Dynamic response analysis of a floating bridge
subjected to environmental loads. Proceedings of the 37th International
Conference on Ocean, Offshore and Arctic Engineering (OMAE2018), 2018,
Madrid, Spain.
[4]Tu Y, Cheng Z, Muskulus M. Detection of plunging breaking waves based on
machine learning. Proceedings of the 37th International Conference on Ocean,
Offshore and Arctic Engineering (OMAE2018), 2018, Madrid, Spain.
[5]Chai W, Naess A, Leira BJ, Cheng Z. Stochastic responses of nonlinear energy
harvesters under random forced excitations, 12th International Conference on
Structural Safety & Reliability (ICOSSAR2017), 2017, Vienna, Austria.
[6]Cheng Z, Wang K, Gao Z, Moan T. Comparative study of spar-type floating
horizontal and vertical axis wind turbines subjected to constant winds,
Proceedings of EWEA Offshore 2015, 2015, Copenhagen, Denmark.
[7]Cheng Z, Wang K, Gao Z, Moan T. Dynamic modeling and analysis of three
floating wind turbine concepts with vertical axis rotor. Proceedings of the
25th International Ocean and Polar Engineering Conference, 2015, Kona, Big
Island, Hawaii, USA.
[8]Wang K, Cheng Z, Moan T, Hansen MOL. Effect of difference frequency forces on
the dynamics of a semi-submersible type FVAWT in misaligned wave-wind
condition. Proceedings of the 25th International Ocean and Polar Engineering
Conference, 2015, Kona, Big Island, Hawaii, USA.

榮譽獎勵

Moan-Faltinsen Best Paper Award, 2017
Marie Curie ITN fellowship, 2013

相關詞條

熱門詞條

聯絡我們