《研究生前沿教材書系·加速器物理學》是2006年11月1日復旦大學出版社出版的圖書,作者是S.Y.Lee
基本介紹
- 書名:加速器物理學
- 作者:S.Y.Lee
- 原版名稱:Accelerator Physics
- 出版社:復旦大學出版社
圖書信息,作者簡介,內容簡介,媒體評論,目錄,
圖書信息
出版社: 復旦大學出版社; 第2版 (2006年11月1日)
外文書名: Accelerator Physics
叢書名: 研究生前沿教材書系
平裝: 575頁
正文語種: 英語
開本: 16
ISBN: 7309052099
條形碼: 9787309052091
尺寸: 22.8 x 15.4 x 3 cm
重量: 762 g
作者簡介
作者:(美國)S.Y.Lee
S.Y.Lee
美國印第安納大學教授、美國物理學會集束物理學分會(Divison of Physics of Beams)會員。長期從事加速器物理的教學和研究工作。研究工作包括集束冷卻技術,集束的非線性動力學特徵,同步輻射的自旋動力學,空間電荷對集束性能的影響,加速器設計原理,電子存儲環的設計,集束不穩定的原因,自由電子雷射器,集束的控制原理和技術,加速器的套用。多年來除了給本科生講授加速器物理和輔導加速器實驗之外,主要負責研究生的教學工作。
曾擔任美國粒子加速器學院(The United States Particle Accelerator School)院長,美國物理學會集束分會經濟委員會成員,物理學會提名委出版著作有:Accelerator Physics、Spin Dynamics and Snakes in Synchrotrons,Space Charge Dominated Beams and Applications of High Brightness Beams,Beam Measurement等。
內容簡介
這本教科書是作者根據自己在印第安納大學給研究生講授《加速器物理學》的上課筆記和給美國粒子加速器學院講授的兩門課的相關講稿基礎上寫成的。自1999年第一版問世以來,被廣泛用作教材。第二版除了對原書作必要的修改之外,增補了自由電子雷射器(FEL)和束線ˉ束線相互作用的第五章。
加速器物理學是一門高度綜合的課程,涉及荷電粒子在特殊設計的電磁場中運動並形成特殊用途束線的物理原理和技術套用的各個領域。《加速器物理學》第一章介紹各種類型加速器的基本原理和發展歷史;第二章講述回旋加速器的橫向運動及其物理處理方法;第三章介紹同步輻射加速器和線型加速器的原理和設計方法;第四章講述同步輻射現象和低輻射電子存儲環的設計原理。《加速器物理學》的最後部分,提出了開發第四代光源的前景。
《加速器物理學》在每節末尾都專門設計了練習題,為了使解題變得較為容易,作者有意把題目細分為很多小題。這些題目的解題思路和最終結果除了使讀者深入了解基本原理之外,還可使讀者直接進入相關的設計領域。
媒體評論
出版者的話
復旦大學出版社出版英文影印版《研究生教學參考書系》,主要基於以下幾點考慮。
1.(新加坡)世界科技出版公司以出版科技專著聞名於世,同我社已有10多年的友好交往。從20世紀90年代以來,尤其是1995年該公司併購了倫敦帝國學院出版社(Imperial College Press)51%的股份(近年已經完成了100%的股份收購)之後,這兩大出版機構在潘國駒教授的集中指揮下,充分發揮了編輯學術委員會的職能,使得出書範圍不斷拓寬,圖書層次逐漸豐富,因此從中遴選影印圖書的空間更大了,再加上該公司在上海設有辦事機構,相關工作人員工作細緻,服務周到,給兩個單位的合作交流帶來極大的便利。
2.研究生教育是創新人才培養的關鍵,教材建設直接關係到研究生科學水平的根本。從2003年開始,我社陸續出版了Fudan Series in Graduate Textbooks這套叢書,國內的讀者反響很好。但限於作者人力,這套叢書涵蓋的學科和門類都嚴重不足。為此,我們想到再藉助國外出版力量,引進一批圖書作為碩士研究生的補充教材,(新加坡)世界科技出版公司與我社的合作,恰好提供了這樣一個良好的機會。我們從該公司提供的近期書目中,遴選30多本樣書,經過專家審讀後,最終確定了其中的11種作為首批《研究生教學參考書系》影印出版。這11種圖書的作者來自美、英、法、德、加拿大5個國家的10多所高校或研究部門,他們既是相關學科科研的領軍人物,又是高年級本科生和研究生教學的傑出教授。各門教材既考慮到深入淺出的認知規律,又突出了前沿學科的具體套用,每本書都有充實的文獻資料,有利於讀者和研究人員深入探索。這其中6本教材配有習題,還包括一本具有物理背景的人員都需要了解的高級科普讀物——《理解宇宙——從夸克到宇宙學》。
3.為了有利於廣大讀者和圖書管理人員、圖書採購銷售人員的使用,特請龔少明編審為每本影印書編寫出中文內容介紹和作者概況,並由他將preface(序言)全文譯成中文。序言是一本書的總綱,它涉及寫作要旨、邏輯體系、內容特色和研讀指導等等,我們將其譯成中文至少有利於讀者瀏覽和選購,避免買書倉促帶來的失誤,畢竟英語是多數讀者的第二種語言。
4.原版書價格較貴,大大超出讀者的購買能力,即使圖書館或大學資料室也會受到經費不足的制約。出版影印本的書價大約只有原價的十分之一,無疑會給需要這些書的研究生和圖書館帶來真正的實惠,這也是(新加坡)世界科技出版公司與我們合作的目的之一。
5.考慮到物理類圖書是(新加坡)世界科技出版公司的第一品牌,我們首次引進的11本書,都屬大物理的範疇。這一嘗試如果得到讀者和專家認可,今後再陸續開闢其他學科的影印渠道。
歡迎讀者批評指正,並提出有益的建議。
復旦大學出版社
2006年9月
目錄
Contents
Preface
Preface to the first edition
1 Introduction
I Historical Developments
I.1 Natural Accelerators
I.2 Electrostatic Accelerators
I.3 Induction Accelerators
I.4 Radio-Frequency (RF) Accelerators
I.5 Colliders and Storage Rings
I.6 Synchrotron Radiation Storage Rings
II Layout and Components of Accelerators
II.1 Acceleration Cavities
II.2 Accelerator Magnets
II.3 Other Important Components
III Accelerator Applications
III.1 High Energy and Nuclear Physics
III.2 Solid-State and Condensed-Matter Physics
III.3 Other Applications
Exercise
2 Transverse Motion
I Hamiltonian for Particle Motion in Accelerators
I.1 Hamiltonian in Frenet-Serret Coordinate System
I.2 Magnetic Field in Frenet-Serret Coordinate System
I.3 Equation of Betatron Motion
I.4 Particle Motion in Dipole and Quadrupole Magnets
Exercise
II Linear Betatron Motion
II.1 Transfer Matrix and Stability of Betatron Motion
II.2 Courant-Snyder Parametrization
II.3 Floquet Transformation
II.4 Action-Angle Variable and Floquet Transformation
II.5 Courant-Snyder Invariant and Emittance
II.6 Stability of Betatron Motion: A FODO Cell Example
II.7 Symplectic Condition
II.8 Effect of Space-Charge Force on Betatron Motion
Exercise
III Effect of Linear Magnet Imperfections
III.1 Closed-Orbit Distortion due to Dipole Field Errors
III.2 Extended Matrix Method for the Closed Orbit
III.3 Application of Dipole Field Error
III.4 Quadrupole Field (Gradient) Errors
III.5 Basic Beam Observation of Transverse Motion
III.6 Application of quadrupole field error
III.7 Transverse Spectra
III.8 Beam Injection and Extraction
III.9 Mechanisms of emittance dilution and diffusion Exercise
IV Off-Momentum Orbit
IV.1 Dispersion Function
IV.2 Η-Function, Action, and Integral Representation
IV.3 Momentum Compaction Factor
IV.4 Dispersion Suppression and Dispersion Matching
IV.5 Achromat Transport Systems
IV.6 Transport Notation
IV.7 Experimental Measurements of Dispersion Function
IV.8 Transition Energy Manipulation
A. γT jump schemes
B. Flexible momentum compaction (FMC) lattices
C. Other similar FMC modules
D. FMC in double-bend (DB) lattices
IV.9 Minimum (Η) Modules
Exercise
V Chromatic Aberration
V.1 Chromaticity Measurement and Correction
V.2 Nonlinear Effects of Chromatic Sextupoles
V.3 Chromatic Aberration and Correction
V.4 Lattice Design Strategy
Exercise
VI Linear Coupling
VI.1 The Linear Coupling Hamiltonian
VI.2 Effects of an isolated Linear Coupling Resonance
VI.3 Experimental Measurement of Linear Coupling
VI.4 Linear Coupling Correction with Skew Quadrupoles
VI.5 Linear Coupling Using Transfer Matrix Formalism
Exercise
VII Nonlinear Resonances
VII.1 Nonlinear Resonances Driven by Sextupoles
VII.2 Higher-Order Resonances
VII.3 Nonlinear Detuning from Sextupoles
VII.4 Betatron Tunes and Nonlinear Resonances
Exercise
VIII Collective Instabilities and Landau Damping
VIII.1 Impedance
VIII.2 Transverse Wave Modes
VIII.3 Effect of Wakefield on Transverse Wave
VIII.4 Frequency Spread and Landau Damping
Exercise
IX Synchro-Betatron Hamiltonian
Exercise
3 Synchrotron Motion
I Longitudinal Equation of Motion
I .1 The Synchrotron Hamiltonian
I .2 The Synchrotron Mapping Equation
I .3 Evolution of Synchrotron Phase-Space Ellipse
I .4 Some Practical Examples
I .5 Summary of Synchrotron Equations of Motion
Exercise
II Adiabatic Synchrotron Motion
II.1 Fixed Points
II.2 Bucket Area
II.3 Small-Amplitude Oscillations and Bunch Area
II.4 Small-Amplitude Synchrotron Motion at the UFP
II.5 Synchrotron Motion for Large-Amplitude Particles
II.6 Experimental Tracking of Synchrotron Motion
Exercise
III RF Phase and Voltage Modulations
III.1 Normalized Phase-Space Coordinates
III.2 RF Phase Modulation and Parametric Resonances
III.3 Measurements of Synchrotron Phase Modulation
III.4 Effects of Dipole Field Modulation
III.5 RF Voltage Modulation
III.6 Measurement of RF Voltage Modulation
Exercise
IV Nonadiabatic and Nonlinear Synchrotron Motion
IV.1 Linear Synchrotron Motion Near Transition Energy
IV.2 Nonlinear Synchrotron Motion at γ≈γT
IV.3 Beam Manipulation Near Transition Energy
IV.4 Synchrotron Motion with Nonlinear Phase Slip Factor
IV.5 The QI Dynamical Systems
Exercise
V Beam Manipulation in Synchrotron Phase Space
V.1 RF Frequency Requirements
V.2 Capture and Acceleration of Proton and Ion Beams
V.3 Bunch Compression and Rotation
V.4 Debunching
V.5 Beam Stacking and Phase Displacement Acceleration
V.6 Double rf Systems
V.7 The Barrier RF Bucket
Exercise
VI Fundamentals of RF Systems
VI.1 Pillbox Cavity
VI.2 Low Frequency Coaxial Cavities
VI.3 Beam Loading
VI.4 Beam Loading Compensation and Robinson Instability
Exercise
VII Longitudinal Collective Instabilities
VII.1 Longitudinal Spectra
VII.2 Collective Microwave Instability in Coasting Beams
VII.3 Longitudinal Impedance
VII.4 Microwave Single Bunch Instability
Exercise
VIII Introduction to Linear Accelerators
VIII.1 Historical Milestones
VIII.2 Fundamental Properties of Accelerating Structures
A. Transit time factor
B. Shunt impedance
C. The quality factor Q
VIII.3 Particle Acceleration by EM Waves
A. EM waves in a cylindrical wave guide
B. Phase velocity and group velocity
C. TM modes in a cylindrical pillbox cavity
D. A1varez structure
E. Loaded wave guide chain and the space harmonics
F. Standing wave, traveling wave, and coupled cavity linacs
G. HOMs
VIII.4 Longitudinal Particle Dynamics in a Linac
VIII.5 Transverse Beam Dynamics in a Linac
Exercise
4 Physics of Electron Storage Rings
I Fields of a Moving Charged Particle
I.1 Non-relativistic Reduction
I.2 Radiation Field for Particles at Relativistic Velocities
I.3 Frequency and Angular Distribution
I.4 Quantum Fluctuation
Exercise
II Radiation Damping and Excitation
II.1 Damping of Synchrotron Motion
II.2 Damping of Betatron Motion
II.3 Damping Rate Adjustment
II.4 Radiation Excitation and Equilibrium Energy Spread
II.5 Radial Bunch Width and Distribution Function
II.6 Vertical Beam Width
II.7 Radiation Integrals
II.8 Beam Lifetime
Exercise
III Emittance in Electron Storage Rings
III.1 Emittance of Synchrotron Radiation Lattices
A. FODO cell lattice
B. Double-bend achromat (Chasman-Green lattice)
C. Minimum (Η)-function lattice
D. Minimizing emittance in a combined function DBA
E. Three-bend achromat
III.2 Insertion Devices
III.3 Beam Physics of High Brightness Storage Rings
Exercise
5 Special Topics in Beam Physics
I Free Electron Laser (FEL)
I.1 Small Signal Regime
I.2 Interaction of the Radiation Field with the Beam
I.3 Experiments on High Gain FEL Generation
Exercise
II Beam-Beam Interaction
II. 1 The beam-beam force
II.2 The Coherent Beam-Beam Effects
II.3 Nonlinear Beam-Beam Effects
II.4 Experimental Observations and Numerical Simulations
II.5 Beam-Beam Interaction in Linear Colliders
Exercise
A Basics of Classical Mechanics
I Hamiltonian Dynamics
I.1 Canonical Transformations
I.2 Fixed Points
I.3 Poisson Bracket
I.4 Liouville Theorem
I.5 Floquet Theorem
II Stochastic Beam Dynamics
II.1 Central Limit Theorem
II.2 Langevin Equation of Motion
II.3 Stochastic Integration Methods
II.4 Fokker-Planck Equation
B Numerical Methods and Physical Constants
I Fourier Transform
1.1 Nyquist Sampling Theorem
1.2 Discrete Fourier Transform
1.3 Digital Filtering
1.4 Some Simple Fourier Transforms
II Model Independent Analysis
II.1 Model Independent Analysis
II.2 Independent Component Analysis
II.3 Accelerator Modeling
III Cauchy Theorem and the Dispersion Relation
III.1 Cauchy Integral Formula
III.2 Dispersion Relation
IV Useful Handy Formulas
IV.1 Generating functions for the Bessel functions
IV.2 The Hankel transform
IV.3 The complex error function
IV.4 A multipole expansion formula
IV.5 Cylindrical Coordinates
IV.6 Gauss' and Stokes' theorems
IV.7 Vector Operation
V Maxwell's equations
V.1 Lorentz Transformation of EM fields
V.2 Cylindrical waveguides
V.3 Voltage Standing Wave Ratio
VI Physical Properties and Constants
Bibliography
Index
Symbols and Notations