知識圖譜實戰:構建方法與行業套用

《知識圖譜實戰:構建方法與行業套用》是2023年機械工業出版社出版的圖書。

基本介紹

  • 中文名:知識圖譜實戰:構建方法與行業套用
  • 出版時間:2023年3月1日
  • 出版社:機械工業出版社
  • ISBN:9787111721642
內容簡介,圖書目錄,作者簡介,

內容簡介

這是一本綜合介紹知識圖譜構建與行業實踐的著作,是作者多年從事知識圖譜與認知智慧型套用落地經驗的總結,得到了多位知識圖譜資深專家的推薦。
本書以通俗易懂的方式來講解知識圖譜相關的知識,尤其對從零開始構建知識圖譜過程中需要經歷的步驟,以及每個步驟需要考慮的問題都給予較為詳細的解釋。
本書基於實際業務進行抽象,結合知識圖譜的7個構建步驟,深入分析知識圖譜技術套用以及8個行業綜合案例的設計與實現。
全書分為基礎篇、構建篇、實踐篇,共16章內容。
基礎篇(第1章),介紹知識圖譜的定義、分類、發展階段,以及構建方式、邏輯/技術架構、現狀與套用場景等。
構建篇(第2~8章),詳細介紹知識抽取、知識表示、知識融合、知識存儲、知識建模、知識推理、知識評估與運維等知識圖譜構建的核心步驟,並結合實例講解套用方法。
實踐篇(第9~16章),詳細講解知識圖譜的綜合套用,涵蓋知識問答評測、知識圖譜平台、智慧型搜尋、圖書推薦系統、開放領域知識問答、交通領域知識問答、汽車領域知識問答、金融領域推理決策。

圖書目錄

前言
基礎篇
第1章 理解知識圖譜 / 2
1.1 知識圖譜概述 / 2
1.1.1 知識定義及分類 / 3
1.1.2 知識圖譜定義 / 4
1.1.3 知識圖譜分類 / 5
1.1.4 知識圖譜發展階段 / 8
1.2 知識圖譜架構 / 8
1.2.1 構建方式 / 8
1.2.2 邏輯架構 / 9
1.2.3 技術架構 / 9
1.3 知識圖譜現狀 / 13
1.3.1 學術界研究現狀 / 13
1.3.2 工業界套用現狀 / 13
1.4 知識圖譜套用場景 / 14
1.4.1 智慧型搜尋 / 14
1.4.2 推薦系統 / 15
1.4.3 知識問答 / 15
1.4.4 推理決策 / 16
1.5 本章小結 / 16
構建篇
第2章 知識抽取 / 18
2.1 知識抽取概述 / 18
2.1.1 知識抽取的定義 / 19
2.1.2 知識抽取的任務 / 20
2.2 知識抽取的方法 / 26
2.2.1 面向結構化數據 / 26
2.2.2 面向半結構化數據 / 28
2.2.3 面向非結構化數據 / 30
2.3 知識抽取實例 / 37
2.3.1 Deepdive的安裝
和配置 / 38
2.3.2 實驗步驟 / 39
2.3.3 模型構建 / 47
2.4 本章小結 / 49
第3章 知識表示 / 50
3.1 知識表示概述 / 50
3.1.1 知識表示的定義 / 50
3.1.2 知識表示的任務 / 51
3.2 知識表示的方法 / 51
3.2.1 基於符號的知識表示 / 51
3.2.2 基於向量的知識表示 / 60
3.3 知識表示實例 / 64
3.3.1 環境配置 / 64
3.3.2 生成映射檔案 / 65
3.3.3 將MySQL數據轉為RDF
三元組 / 67
3.4 本章小結 / 68
第4章 知識融合 / 69
4.1 知識融合概述 / 69
4.1.1 知識融合的定義 / 70
4.1.2 知識融合的任務 / 70
4.2 知識融合的方法 / 73
4.2.1 本體對齊方法 / 73
4.2.2 實體對齊方法 / 77
4.3 知識融合實例 / 80
4.3.1 環境配置 / 81
4.3.2 預處理與匹配 / 81
4.3.3 結果評估 / 84
4.4 本章小結 / 85
第5章 知識存儲 / 86
5.1 知識存儲概述 / 86
5.1.1 知識存儲的定義 / 86
5.1.2 知識存儲的任務 / 87
5.2 知識存儲的方法 / 89
5.2.1 基於關係型資料庫的
知識存儲 / 89
5.2.2 基於NoSQL的
知識存儲 / 92
5.2.3 基於分散式的
知識存儲 / 96
5.3 知識存儲實例 / 98
5.3.1 使用Apache Jena
存儲數據 / 98
5.3.2 使用Neo4j資料庫
存儲數據 / 98
5.4 本章小結 / 103
第6章 知識建模 / 104
6.1 知識建模概述 / 104
6.1.1 知識建模的定義 / 104
6.1.2 知識建模的任務 / 107
6.2 知識建模的方法 / 109
6.2.1 手工建模方法 / 109
6.2.2 半自動建模方法 / 113
6.2.3 本體自動建模方法 / 114
6.3 知識建模實例 / 116
6.3.1 創建項目實例 / 117
6.3.2 創建本體關係和屬性 / 118
6.3.3 知識圖譜可視化 / 120
6.4 本章小結 / 121
第7章 知識推理 / 122
7.1 知識推理概述 / 122
7.1.1 知識推理的定義 / 122
7.1.2 知識推理的任務 / 123
7.2 知識推理的方法 / 124
7.2.1 基於邏輯規則的推理 / 124
7.2.2 基於知識表示學習的推理 / 131
7.2.3 基於神經網路的推理 / 134
7.2.4 混合推理 / 136
7.3 知識推理實例 / 137
7.4 本章小結 / 139
第8章 知識評估與運維 / 140
8.1 知識評估與運維概述 / 140
8.1.1 知識評估概述 / 141
8.1.2 知識運維概述 / 142
8.2 知識評估與運維的任務 / 143
8.2.1 知識評估任務 / 143
8.2.2 知識運維任務 / 147
8.3 知識評估與運維流程 / 149
8.3.1 知識評估流程 / 149
8.3.2 知識運維流程 / 150
8.4 本章小結 / 151
實踐篇
第9章 知識問答評測 / 154
9.1 知識問答系統概述 / 154
9.1.1 知識問答系統定義 / 155
9.1.2 知識問答問題分類 / 155
9.1.3 知識問答評測技術方案 / 157
9.2 自然語言知識問答評測 / 159
9.2.1 任務背景 / 159
9.2.2 數據分析 / 159
9.2.3 技術方案 / 160
9.2.4 任務結果 / 163
9.3 生活服務知識問答評測 / 164
9.3.1 任務背景 / 164
9.3.2 數據分析 / 164
9.3.3 技術方案 / 165
9.3.4 任務結果 / 168
9.4 開放知識問答評測 / 168
9.4.1 任務背景 / 168
9.4.2 數據分析 / 168
9.4.3 技術方案 / 169
9.4.4 任務結果 / 172
9.5 本章小結 / 172
第10章 知識圖譜平台 / 173
10.1 知識圖譜平台建設背景 / 173
10.2 知識圖譜平台基本功能 / 175
10.3 AiMind知識圖譜平台 / 175
10.3.1 數據管理 / 176
10.3.2 知識建模 / 180
10.3.3 知識抽取 / 185
10.3.4 知識融合 / 189
10.3.5 知識管理 / 191
10.3.6 知識套用 / 194
10.4 本章小結 / 196
第11章 智慧型搜尋實踐 / 197
11.1 智慧型搜尋背景 / 197
11.2 智慧型搜尋業務設計 / 198
11.2.1 場景設計 / 198
11.2.2 知識圖譜設計 / 199
11.2.3 模組設計 / 200
11.3 數據獲取與預處理 / 20

作者簡介

於 俊
中國科學技術大學電子信息專業博士研究生,科大訊飛大數據及人工智慧技術專家,安徽大學計算機技術專業碩士生導師,CCF高級會員。有超過15年的大數據及人工智慧算法工程化經驗,專注大數據分析及數據價值挖掘、大數據及人工智慧技術套用落地。著有《Spark核心技術與高級套用》《Spark機器學習進階實戰》等書。
李雅潔
華中科技大學套用統計碩士,在知識圖譜、自然語言處理、大數據分析與挖掘、機器學習等領域有豐富的研究和開發經驗。精通Python、R語言以及Spark等大數據框架,擅長自然語言處理及知識圖譜構建。
彭加琪
中國科學技術大學計算機科學碩士,科大訊飛核心研發平台主管,負責AI數據平台和知識中台建設,精通Java、Python等程式語言,擅長分散式系統建設以及企業級知識圖譜構建與套用。
程知遠
悉尼大學數據科學碩士,科大訊飛大數據工程師,負責智慧教學產品及學生行為分析的算法研究及引擎實現。精通Java、Python等程式語言,擅長分散式系統建設以及企業級知識圖譜構建與套用。

相關詞條

熱門詞條

聯絡我們