相位裕量

相位裕量是分析運算放大器穩定性的一個重要參數,用符號γ來表示,固定的運算放大器設計只有一個相位裕量,相位裕量下降會導致信號的上升沿和下降沿的振盪加大。

簡單地說裕量就是多餘的量。用γ來表示
相位裕量是分析運算放大器穩定性的一個重要參數,相位裕量是指運算放大器開環增益為0dB時的相位與180 ° 的差值,對於一個固定的運算放大器設計,相位裕量只有一個。如圖1所示,可以看出在開環增益為0dB時,AD8648的頻率約為25MHz,此時的相位值約為106 ° ,故相位裕量為74 。
如果系統的環路增益大於等於0dB且相移超過180 ° 時,閉環的放大電路就會不穩定產生振盪,而相位裕量表明了距離產生自激振盪的裕量大小,這也是相位裕量成為標誌運算放大器穩定性的一個重要參數的原因之一。
影響相位裕量的因素包括閉環迴路的噪聲增益和負載情況。一般而言,噪聲增益愈小則相位裕量愈小,因此單位增益的系統是最難穩定的。同時,在選擇運算放大器作為增益緩衝器時,應當注意運算放大器在單位增益接法下是否能保持穩定。純阻性負載一般對相位裕量沒有影響,感性負載對相位裕量有改善作用,而實際套用中最常套用的容性負載則會降低運算放大器電路的相位裕量,從而導致系統易產生自激振盪。
圖2示意了時域和頻域角度下,相位裕量對系統穩定性的影響。可以看出在時域中,相位裕量下降將導致信號的上升沿和下降沿的振盪加大,使得系統的穩定時間延長。而在頻域中,相位裕量下降將使轉折頻率處出現尖峰。
對於有負載的系統,可以通過分析系統的頻率回響獲得相位裕量的計算公式。對於簡單的系統,可以採用下面的簡單步驟來判讀系統是否穩定,即根據階躍回響的過沖大小來估計相位裕量。對階躍回響輸入,一般可選用峰峰值為100mV的信號進行測試,這樣可以避免壓擺率的非線性問題,如果此時在系統的輸出端觀察到過沖或振盪,則需要重新考慮系統的穩定性。

相關詞條

熱門詞條

聯絡我們