白玉俊(山東大學材料學院教授)

白玉俊(山東大學材料學院教授)

本詞條是多義詞,共2個義項
更多義項 ▼ 收起列表 ▲

白玉俊,男,1967.12生,山東大學材料學博士研究生畢業,現任山東大學材料學院教授。

基本介紹

  • 中文名:白玉俊
  • 國籍中國
  • 出生日期:1967年12月
  • 畢業院校山東大學哈爾濱工程大學
  • 學位/學歷:博士研究生
  • 職業:教師
  • 專業方向:材料學
  • 職稱:山東大學材料學院教授
人物經歷,研究方向,主要成就,主要論文,發明專利,獲獎記錄,主持項目,社會兼職,

人物經歷

2003/11- 至今 山東大學材料學院,教授。
2002/11-2003/10 山東科技大學機械系,教授。
2000/12-2003/06 山東大學晶體材料國家重點實驗室,博士後。
2000/11-2002/10 山東科技大學機械系,副教授。
1996/10-2000/10 現山東科技大學機械系,講師。
1995/07-1996/09 山東科技大學機械系,助教。
1989/07-1992/09 洛陽407廠測試中心工作,助理工程師。
1997/09-2000/07 山東大學, 獲材料學博士學位。
1992/09-1995/07 山東大學, 獲材料學碩士學位。
1985/09-1989/07 哈爾濱工程大學, 獲材料學學士學位。

研究方向

(1)先進功能材料的設計、製備、性能及套用研究;
(2)高性能鋰離子電池電極材料的設計、加工、性能及套用研究;
(3)超級電容器電極材料設計、加工、性能及套用研究;
(4)先進陶瓷材料的設計、製備、性能及套用研究。

主要成就

在Advanced Energy Materials、Journal of Materials Chemistry A、ACS Applied Materials & Interfaces、Journal of Power Sources、Carbon等雜誌發表SCI論文130餘篇,被Materials Science & Engineering R-Reports、Progress in Materials Science等期刊他引2000餘次。獲授權國家發明專利20餘項。

主要論文

1.Li2ZnTi3O8/C anode with high initial Coulombic efficiency, long cyclic life and outstanding rate properties enabled by fulvic acid, Carbon 163 (2020) 297-307。
2.On the capacity degradation of Li4Ti5O12 during long-term cycling in terms of composition and structure. Dalton Transactions, 2020, DOI: 10.1039/D0DT01719A
3.Optimizing the cycling life and high-rate performance of Li2ZnTi3O8 by forming thin uniform carbon coating derived from citric acid. Journal of Materials Science. 2020, 10.1007/s10853-020-04980-1
4.Synergistic modification of commercial TiO2 by combined carbon sources of citric acid and sodium carboxymethyl cellulose. New J. Chem., 2020, 44,1571
5.Co-Modification of commercial TiO2 anode by combining a solid electrolyte with pitch-derived carbon to boost cyclability and rate capabilities. Nanoscale Adv., 2020, 2, 2531-2539.
6.Sodium carboxymethyl cellulose as an effective modifier for boosting the electrochemical performance of commercial TiO2, Energy Technology 2019
7.A uniform few-layered carbon coating derived from self-assembled carboxylate monolayers capable of promoting the rate properties and durability of commercial TiO2. RSC Adv., 2019, 9, 36334.
8.A Comprehensive Understanding of Lithium–Sulfur Battery Technology. Advanced Functional Materials. 2019, 1901730.
9.Optimizing the supercapacitive performance and cyclability of Ni(OH)2 by simply compositing with CuO concomitant with mutual doping. ChemElectroChem 10.1002/celc.201901204.
10.Li2ZnTi3O8 Coated with Uniform Lithium Magnesium Silicate Layer Revealing Enhanced Rate Capability as Anode Material for Li-Ion Battery. Electrochimica Acta 2019, 315, 24-32.
11.Effective enhancement in rate capability and cyclability of Li4Ti5O12 enabled by coating lithium magnesium silicate. Electrochimica Acta 2019,295, 891-899.
12.Fabricating Mn3O4/Ni(OH)2 nanocomposite by water-boiling treatment to utilize in asymmetric supercapacitors as electrode material. ACS Sustainable Chemistry & Engineering. 2018, 6, 15688-15696.
13.Combined Modification of Dual-Phase Li4Ti5O12-TiO2 by Lithium Zirconates to Optimize Rate Capabilities and Cyclability. ACS Applied Materials & Interfaces. 2018, 10, 24910-24919.
14.Li1.3Al0.3Ti1.7(PO4)3 Behaving as a Fast Ionic Conductor and Bridge to Boost the Electrochemical Performance of Li4Ti5O12. ACS Sustainable Chemistry & engineering 2018, 6, 7273-7282.
15.Combined Modification by LiAl11O17 and NaAl11O17 to enhance the electrochemical Performance of Li4Ti5O12. Applied Surface Science 2018, 447, 279–286.
16.Boosted Electrochemical Performance of Li2ZnTi3O8 Enabled by Ion-Conductive Li2ZrO3 Concomitant with Superficial Zr-doping. Journal of Power Sources 2018, 379, 270-277.
17.Boosting the cyclability of commercial TiO2 anode by introducing appropriate amount of Ti9O17 during coating carbon. Journal of Alloys and Compounds 2018, 762, 598-604.
18.Ionic Conductor of Li2SiO3 as an Effective Dual-Functional Modifier to Optimize the Electrochemical Performance of Li4Ti5O12 for High-Performance Li-Ion Batteries. ACS Appl. Mater. Interfaces, 2017, 9 (2), 1426–1436.
19.Li4Ti5O12 Composited with Li2ZrO3 Revealing Simultaneously Meliorated Ionic and Electronic Conductivities as High Performance Anode Materials for Li-ion Batteries. Journal of Power Sources. 2017, 354, 16-25.
20.Improving the Electrochemical Performance of Li2ZnTi3O8 by Surface KCl Modification. ACS Sustainable Chemistry & Engineering. 2017, 5, 6099-6106.
21.Enhancing the electrochemical performance of commercial TiO2 by eliminating sulfate radicals and coating carbon. Electrochimica Acta 2017, 245, 186–192.
22.Efficient mass-fabrication of amorphous mesoporous MnSiO3/C with high stability through simple water-boiling treatment and the Li-ion storage performance. New Journal of Chemistry. 2017, 41, 4295-4301.
23.Fe3O4 nanoparticles decorated on the biochar derived from pomelo pericarp as excellent anode materials for Li-ion batteries. Electrochimica Acta 2016, 222: 1562–1568.
24.Fabricating MnO/C composite utilizing pitch as soft carbon source for rechargeable Li-ion batteries. New Journal of Chemistry. 2016, 40, 9986-9992.
25.Manganese silicate drapes as a novel electrode material for supercapacitors. RSC Adv., 2016, 6, 105771–105779.
26.Al2O3-modified Ti–Mn–O nanocomposite coated with nitrogen-doped carbon as anode material for high power lithium-ion battery. RSC Adv., 2016, 6, 40953–40961.
27.One-step fabrication of Fe-Si-O/carbon nanotube composite anode material with excellent high-rate long-term cycling stability. Journal of Alloys and Compounds 686 (2016) 318-325
28.Nitrogen-Doped Carbon-Coated Ti−Fe−O Nanocomposites with Enhanced Reversible Capacity and Rate Capability for High-Performance Lithium-Ion Batteries. RSC Advances, 2016, 6, 65266–65274
29.Improving the Li-ion storage performance of commercial TiO2 by coating with soft carbon derived from pitch. Electrochimica Acta. 2016, 212 , 155-161
30.One-step fabricating nitrogen-doped TiO2 nanoparticles coated with carbon to achieve excellent high-rate lithium storage performance. Electrochimica Acta 2016,187:389-396
31.Ti-Sn-O Composite Oxides Coated with N-doped Carbon Exhibiting Enhanced Lithium Storage Performance. New J. Chem., , 2016, 40: 285-294.
32.Simple fabrication of TiO2/C nanocomposite with enhanced electrochemical performance for lithium-ion batteries. Electrochimica Acta 2015, 169: 241–247
33.Carbon-coated manganese silicate exhibiting excellent rate performance and high-rate cycling stability for lithium-ion storage. Electrochimica Acta. 2015, 186: 572–578
34.Excellent performance of carbon-coated TiO2/Li4Ti5O12 composite with low Li/Ti ratio for Li-ion storage. RSC Advances, 2015, 5, 93155 - 93161
35.Enhancing the comprehensive Electrochemical Performance by compositing intercalation/deintercalation-type of TiO2 with conversion-type of MnO. Journal of Alloys and Compounds 640 (2015) 15–22.
36.Simple Preparation of Carbon Nanofibers with Graphene Layers Perpendicular to the Length Direction and the Excellent Li-ion Storage Performance. ACS Applied Materials & Interfaces. 2015, 7 (9), pp 5107–5115.
37.Enhancing the Long-Term Cyclability and Rate Capability of Li4Ti5O12 by Simple Copper-Modification. Electrochimica Acta 155 (2015) 132–139.
38.Enhancing the reversible capacity and rate performance of anatase TiO2 by combined coating and compositing with N-doped carbon. Journal of Power Sources 2015, 273: 472-478.
39.Li-Ion Storage Performance of MnO Nanoparticles Coated with Nitrogen-Doped Carbon Derived from Different Carbon Sources. Electrochimica Acta 2014, 146: 249–256.
40.Thermal formation of porous Fe3O4/C microspheres and the lithium storage performance. Journal of Alloys and Compounds 2014, 597: 30–35.
41.Li-ion Storage Performance of Carbon-Coated Mn-Al-O Composite Oxides. J. Phys. Chem. C 2014, 118: 23559−23566.
42.Enhanced Electrochemical Performance of Zn-Doped Fe3O4 with Carbon Coating. Electrochimica Acta. 117 (2014) 230–238.
43.Batteries. ACS Applied Materials & Interfaces. 2013, 5, 9470−9477.
44.Enhanced electrochemical performance of FeWO4 by coating nitrogen-doped carbon. ACS Applied Materials & Interfaces. 2013, 5, 4209−4215.
45.Preparation of carbon-coated MgFe2O4 with excellent cycling and rate performance. Electrochimica Acta. 2013, 90, 119–127.
46.Large-scale preparation of hollow graphitic carbon nanospheres. Materials Chemistry and Physics 2013, 137: 904-909.
47.Yttrium–modified Li4Ti5O12 as an effective anode material for lithium ion batteries with outstanding long–term cyclability and rate capabilities. Journal of Materials Chemistry A, 2013, 1 (1), 89 – 96.
48.Excellent long-term cycling stability of La–doped Li4Ti5O12 anode material at high current rates. Journal of Materials Chemistry, 2012, 22, 19054–19060.
49.Large-scale synthesis of hollow highly-graphitic carbon nanospheres by the reaction of AlCl3·6H2O with CaC2. Carbon.2012, 50:1871-1878.
50.Low Temperature Preparation of Hollow Carbon Nano-polyhedrons with Uniform Size, High Yield and Graphitization. Materials Chemistry and Physics. 2012, 134(2–3): 639–645.
51.Toughening and reinforcing zirconia ceramics by introducing boron nitride nanotubes. Materials Science & Engineering A. 2012, 546: 301–306.
52.In-situ synthesis of one-dimensional MWCNT/SiC porous nanocomposites with excellent microwave absorption properties. Journal of Materials Chemistry. 2011, 21(35): 13581-13587.
53.Preparation of Carbon Nano-Onions and Their Application as Anode Materials for Rechargeable Lithium-ion Batteries. The Journal of Physical Chemistry C 2011, 115, 8923–8927.
54.Template-Free Synthesis of Hollow Carbon Nanospheres for High-Performance Anode Material in Lithium-Ion Batteries. Advanced Energy Materials. 2011, 1: 798–801. Synthesis of hollow carbon sphere/ZnO@C composite as a light-weight microwave absorber. Journal of Physics D: Applied Physics. 2011, 44, 265502。
55.One-Step preparation of Six-Armed Fe3O4 Dendrites with Carbon Coating applicable for Anode Material of Lithium-ion Battery. Materials Letters 2011, 65, 3157–3159.
56.Microwave absorption properties of TiN nanoparticles. Journal of alloys and compounds. 2011, 509: 10032-10035.
57.Fabrication of Alumina Ceramic Reinforced with Boron Nitride Nanotubes with Improved Mechanical Properties. Journal of the American Ceramic Society. 2011, 94(11): 3636–3640.
58.Microstructure and mechanical properties of alumina ceramics reinforced by boron nitride nanotubes. Journal of the European Ceramic Society 2011, 31: 2277–2284.
59.Thermal Shock Resistance Behavior of Alumina Ceramics Incorporated with Boron Nitride Nanotubes. Journal of the American Ceramic Society 2011, 94(8): 2304–2307.
60.Simple synthesis of mesoporous boron nitride with strong cathodoluminescence emission. Journal of Solid State Chemistry 2011, 184 (4) 859–862.
61.Rapid, Low temperature synthesis of β-SiC nanowires from Si and graphite. Journal of the American Ceramic Society. 2010, 93 (9) 2415–2418.
62.Low-Temperature Synthesis of Meshy Boron Nitride with a Large Surface Area. European Journal of Inorganic Chemistry. 2010, 2010(20): 3174–3178.
63.Facile synthesis of boron nitride coating on carbon nanotubes. Materials Chemistry and Physics, 2010, 122(1): 129-132.
64.Simple synthesis of hollow carbon spheres from glucose. Materials Letters. 2009, 63(29):2564–2566.
65.Large-scale synthesis of BN nanotubes using carbon nanotubes as template. Materials Letters. 2009, 63(15): 1299-1302.
66.Facile Synthesis of Si3N4 Nanocrystals Via an Organic–Inorganic Reaction Route. Journal of the American Ceramic Society. 2009, 92(2): 535-538.
67.Synthesis of Carbon Spheres via a Low-Temperature Metathesis Reaction. The Journal of Physical Chemistry C 2008, 112(32), 12134–12137.
68.Rapid synthesis of graphitic carbon nitride powders by metathesis reaction between CaCN2 and C2Cl6. Materials Chemistry and Physics. 2008, 112(3):1124-1128.
69.Carbon nanobelts synthesized via chemical metathesis route. Materials Letters, 2007, 61(4-5): 1122-1124.
70.HRTEM Microstructures of PAN precursor fibers. Carbon. 2006, 44(9):1773-1778.
71.Rapid synthesis of Si3N4 dendritic crystals. Scripta Materialia. 2006, 54(3): 447–451.
72.One Step Convenient Synthesis of Crystalline β-Si3N4. Journal of Materials Chemistry. 2005, 15, 4832–4837.
73.Low temperature induced synthesis of TiN nanocrystals. Inorganic Chemistry. 2004, 43(12): 3558-3560.

發明專利

1.一種矽酸鎂鋰包覆改性鈦酸鋅鋰負極材料及其製備方法. ZL 2018107790644
2.一種氯化鉀改性鈦酸鋅鋰負極材料的製備方法. ZL 201710111360.2
3.一種複合鋯酸鋰改性雙相鈦酸鋰/二氧化鈦負極材料的製備技術. ZL 2018101615872.
4.一種鉬酸鈉改性鈦酸鋅鋰負極材料及其製備方法 ZL 201710624260X.
5.一種矽酸鋰改性鈦酸鋰負極材料及製備方法、套用。 ZL 201610045279.4。
6.一種鈦酸鋅鋰/二氧化鈦複合負極材料及其製備方法。ZL201620059176.9.
7.一種釔改性的鈦酸鋰負極材料及其製備方法。ZL2012102953084.
8.一種石墨與過渡金屬氧化物複合負極材料及其製備方法。ZL201210398479X.
9.一種高穩定性非晶矽酸錳的製備方法。ZL 201610237316.1
10.一種低溫反應製備高石墨化空心納米碳球的方法。ZL201110219856.4.
11.氮化硼納米管增強的氮化矽陶瓷及其製備方法。ZL200910015758.1。
12.一種氮化硼納米管增強增韌氧化鋯陶瓷的方法。ZL201010277828.3。
13.一種低溫輔助反應誘發合成碳化矽或碳化矽納米管的方法。ZL200910020314.7。
14.一種低溫反應製備多孔氮化鈦的工藝。ZL200910256087.8。
15.一種低溫製備氮化矽粉體材料的方法。ZL200810015630.0。
16.氮化硼納米管增強的氧化鋁陶瓷的製備方法。ZL200910014220.9。
17.一種製備氮化硼包覆碳納米管納米線及氮化硼納米管的方法。ZL200810015631.5。
18.一種矽納米管和納米線的製備工藝。ZL200810014146.6。
19.一種低溫製備氮化矽粉體材料的方法。ZL200410023753.0。
20.碳氮化鈦三元化合物粉體材料的製備方法。ZL200410023706.6。

獲獎記錄

1.2019年度山東省優秀碩士學位論文指導教師。
2.2019年度山東大學優秀碩士學位論文指導教師。
3.2012年12月山東省高等學校優秀科研成果獎:Si-B-C-N系材料的低溫製備及相關性能研究。自然科學類二等獎。
4.2010年度山東省優秀碩士學位論文指導教師。
5.2010年度山東大學優秀碩士學位論文指導教師。
6.2009年7月山東省研究生優秀科技創新成果獎指導教師。
7.2005年12月, 山東省高等學校優秀科研成果獎三等獎:無機材料超細粉體的製備及表征。
8.2002年10月,山東省高等學校優秀科研成果獎二等獎:CuZnAlMnNi形狀記憶合金的轉變行為。
9.2001年9月,山東省科技進步三等獎:銅基形狀記憶合金的相變特性及組織結構的演化。
10.2001年12月,山東省第五批中青年學術骨幹。

主持項目

1. 2019.07-2022.06山東省自然科學基金(ZR2019MEM029):工業氧化鈦基負極材料電化學性能的最佳化及相關機理研究。
2. 2019.5-2022.5軟包鋰電池負極材料性能最佳化技術研發(橫向)。
3. 2018.5-2021.5錳酸鋰正極材料性能最佳化技術研發(橫向)。
4. 2016.1-2017.12山東省重點研發計畫(2016GGX102031):矽酸鋰改性鈦酸鋰負極材料的關鍵技術研究。
5. 2016.7-2018.12 山東省自然科學基金(ZR2016EMM18):離子導體矽酸鋰改性Li2ZnTi3O8負極材料的電化學性能及改性機理研究。
6. 2015.11-2018.11鈦酸鋰負極材料的製備技術研發(橫向)。
7. 2016.1-2020.12 國家基金重點項目(51532005):介孔/微孔複合材料的控制製備與儲能套用。
8. 2015.7-2017.12,山東省自然科學基金(ZR2015EM016):鐵基矽酸鹽鋰離子電池負極材料的製備及其電化學性能研究。
9. 2015.2-2018.3,鋰離子電池負極材料性能測試(橫向)。
10. 2014.10-2016.9,鋰離子電池複合負極材料的製備技術研發(橫向)。
11. 2014.4-2016.4,鋰電池負極材料的研製(橫向)。
12. 2013.12-2014.12,一種低溫製備氮化矽粉體材料的方法(山東省)。
13. 2013.11-2014.10,高性能鋰離子電池負極材料的研製(橫向)。
14. 2013.9-2014.9,改性石墨負極材料的研製(橫向)。
15. 2012.7-2013.7,高性能人造石墨負極材料的研製(橫向)。
16. 2012.1-2014.12,山東大學自主創新基金(2012ZD004):多元氧化物鋰離子電池負極材料的製備及電化學性能研究。
17. 2011.10-2013.9,晶體材料國家重點實驗室2011年度開放課題(KF1105):改性碳材料的吸波性能研究。
18. 2011.1-2012.12,山東省科學技術發展計畫項目(2011GGX10205)新型BNNTs/Si3N4複合材料的製備及其關鍵技術。
19. 2010.1-2012.12,國家自然科學基金項目(50972076):氮化硼納米管大量製備、形成機理及其對氧化鋁陶瓷的強韌化作用。
20. 2009.1—2010.12,山東省科學技術發展計畫項目(2009GG10003001):碳納米管/納米線表面包覆氮化硼技術及包覆後的相關技術研究。
21. 2009.12-2011.12山東大學自主創新基金(2009TS001):BNNTs/Al2O3複合陶瓷的製備、高溫性能及強韌化機理研究。
22. 2009.1—2010.12,山東省科學技術發展計畫項目(2009GG10003003):納米α-Al2O3粉體的先驅體低溫熱解法製備及其關鍵技術研究。
23. 2008.12—2011.12,山東省自然科學基金項目(Y2008F40):液態金屬浮力作用下納米空心碳球的大規模製備、機理及儲氫性能。
24. 2009.1—2011.12,國家自然科學基金項目(50872072):液態金屬浮力下矽納米管和納米線的大量製備、生長機理及相關物性研究。
25. 2008.12—2011.12,碳化矽低溫製備技術(橫向)。
26. 2001年7月-2003年6月,中國博士後科學基金:通過TEM和HRTEM研究納米半導體材料的奇異性能與組織結構的關係。
27. 2001年9月-2004年8月,山東省自然科學基金(Y2001F06):銅基形狀記憶合金在低溫下的轉變特性及組織結構的演化。
28. 2001年10月-2004年9月,山東省第五批中青年學術骨幹項目:無機非金屬功能材料超細粉體的製備。
29. 1992年9月-1995年7月,山東省自然科學基金(89F0274):銅基形狀記憶合金的研究。
30. 2002年9月-2005年8月,山東省教育廳項目:逆變微弧等離子設備及在內燃機關鍵零件上的套用。

社會兼職

Energy & Environmental Science、Nature communications、Journal of Materials Chemistry、Chemical Communications、Carbon、Nanoscale、中國科學等國內外期刊審稿人。國家“863”項目、國家自然科學基金、山東省科技發展計畫項目、內蒙古自治區自然科學基金、河北省自然科學基金、國家科技獎等評審專家。

相關詞條

熱門詞條

聯絡我們