1983年,Sheffield大學的Barber和Brown開始了電阻抗斷層成像研究,他們小組於1987年在工程上初步實現了這一技術,研製出了Sheffield Mark I 原理樣機系統,國際上多個研究小組購買了該系統開展了系列研究工作,在早期有力的推動了EIT技術的研究工作。Sheffield Mark I系統在人體表面一圈貼上16個等距的電極的方式進行數據採集,這種採集方式一直延續至今,目前仍是大多數EIT系統所採用的方式。早期的EIT研究重點是靜態成像,1983年最早發表的EIT圖像顯示的是手臂圖像,在該圖像中可觀察到高阻抗的區域可大體對應手臂的骨頭和脂肪組織。由於EIT不使用核素或射線,對人體無害,可以多次測量重複使用,成像速度快,具有功能成像等特點,加之其成本較低,不要求特殊的工作環境,因而是一種理想的、具有誘人套用前景的無損傷醫學成像技術,在20世紀末迅速成為研究熱點。
[1] McAdams E T, Jossinet J, Lackermeier A, et al. Factors affecting electrode-gel-skin interface impedance in electrical impedance tomography[J]. Medical & Biological Engineering & Computing, 1996, 34(6): 397-408.
[2] Rahal M, Khor J M, Demosthenous A, et al.A comparison study of electrodes for neonate electrical impedance tomography[J]. Physiological Measurement, 2009, 30(6): 73-84.
[3] Oh T I, Woo E J, Holder D S. Multi-frequency EIT system with radially symmetric architecture: KHU Mark1[J]. Physiological Measurement, 2007, 28(7): S183-S196.
[4] Bera T K, Nagaraju J. A Simple instrumentation calibration technique for Electrical Impedance Tomography (EIT) using a 16-electrode phantom[C]//CASE 2009 IEEE International Conference on Automation Science and Engineering. Bangalore, India:IEEE, 2009: 347-352.
[5] Kaufmann S, Latif A, Saputra W C, et al.Multi-frequency electrical impedance tomography for intracranial applications[C]//2013 World Congress on Medical Physics and Biomedical Engineering. Beijing, China: Springer, 2013:961-963.
[6] Pettigrew R I, Peterson K P, Heetderks W, et al. Special report:the national institute of biomedical imaging and bioengineering marks its first five years[J]. Academic Radiology, 2007, 14(12): 1448-1454.
[7] Henderson R P, Webster J G. An impedance camera for spatially specific measurements of the thorax[J]. IEEE Transactions on Biomedical Engineering, 1978, 25(3): 250-255.
[8] Barber D C, Brown B H, Freeston I L. Imaging spatial distributions of resistivity using applied potential tomography[J]. Electronic Letters, 1983, 19(22): 933-935.
[9] Barber D C, Brown B H. Applied potential tomography[J]. Journal of Physics E-Scientific Instruments, 1984, 17(9):723-733.
[10] Kohn R V, McKenney A. Numerical implementation of a variational method for electrical impedance tomography[J]. Inverse Problems, 1990, 6(3): 389-414.
[11] Khambampati A K, Ijaz U Z, Lee J S, et al. Phase boundary estimation in electrical impedance tomography using the Hooke and Jeeves pattern search method[J]. Measurement Science & Technology, 2010, 21(3): 1-13.
[12] Yousefi M R,Jafari R,Moghaddam H A. A Combined wavelet-based mesh-free method for solving the forward problem in electrical impedance tomography[J].IEEE Transactions on Instrumentation and Measurement, 2013, 62(10): 2629-2638.
[13] Isaacson D. Distinguishability of conductivities by electric current computed tomography[J].IEEE Transactions on Medical Imaging, 1986, 5(2): 91-95.
[14] Schuessler T F, Bates J T. Current patterns and electrode types for single source electrical impedance tomography of the thorax[J]. Annals of Biomedical Engineering, 1998, 26(2): 253-259.
[15] Demidenko E, Hartov A, Soni N, et al. On optimal current patterns for electrical impedance tomography[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(2): 238-248.
[16] Barber D C, Brown B H. Applied Potential Tomography. Journal of Physics E-Scientific Instruments, 1984, 17(9): 723-733.
[17] Holder D S. Electrical impedance tomography: methods, history and applications[M]. Bristol, U.K.: IOP Publishing, 2004:28-48.
[18] Kolehmainen V, Lassas M, Ola P. Electrical impedance tomography problem with inaccurately known boundary and contact impedances[J]. IEEE Transactions on Medical Imaging, 2008, 27(10): 1404-1414.
[19] Dolgin M, Einziger P. Stable reconstruction of piece-wise continuous plane-stratified biological tissues via electrical impedance tomography[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(5):1227-1233.
[20] Adler A, Arnold JH, Bayford R, et al. GREIT: a unified approach to 2D linear EIT reconstruction of lung images[J]. Physiological Measurement, 2009,30(6):35-55.
[21] Jehl M, Dedner A, Betcke T, et al. A fast parallel solver for the forward problem in electrical impedance tomography[J].IEEE Transactions on Biomedical Engineering, 2014,E-pub ahead.