王林翔

王林翔,男,博士,現任浙江大學機械工程學院機械設計研究所副所長,教授,博士生導師。

基本介紹

  • 中文名:王林翔
  • 學位/學歷:博士
  • 職業:教師
  • 專業方向:機械電子工程、智慧型結構與元器件、數學建模與分析、非線性動力學
  • 任職院校:浙江大學機械工程學院
研究方向,個人經歷,學術成果,

研究方向

機械電子工程,智慧型結構與控制

個人經歷

浙江省疊甩旋特聘專家,American Journal of Materials Science and Technology 編委,機械工程期刊(中國) 編委,ASME 會員, IEEE 會員,中國力學學會高級會員,中國機械工程學會高級會員,曾應邀為 Smart materials and structurers, Journal of Vibration and Control, Current Opinion in Solid State Materials Science, International journal of nonlinear mechanics, Materials Science and Engineering. A, Solid State Science, Mechanics Research Communications, Journal of Mathematical Control Science and Applications, Journal of Physcis D, 浙江大學學報(英文版), Mecanica等多家國際性學雜誌審稿。

學術成果

代表性研究項目與內容
2014 -至今,數字液壓及機器人驅動控制技術(企業委託研發):對重載機器人淚厚及關節的驅動,採用新型的數字液壓與伺服控制技術, 設計新型的液壓驅動的伺服式機器人關節。對機器人及其關節的動力學行為進行建模,分析與控制。採用創新性的流量匹配技術,結合容積式控制技術,大幅度簡化系統設計,實現能效的大幅提升,兵榆您實現了高度集成的液壓伺服控制系統。
2002 -至今,智慧型複合結構的動力學及套用研究(丹麥企業委託項目,丹麥國家技術基金項目,中國國家自然科學基金項目,浙江省自然科學基金項目等等):對含有智慧型材料與結構的複合結構和元器件的動力學行為進行建模,數值分析與控制。對智慧型材料中由於相盛只殼變引起的滯回效應,在經典的耦合熱彈性動力學、電彈性動力學理論、流變學等基礎上,建立其巨觀的動力學模型。對智慧型結構在減震、消聲、能量轉換等不同方面的套用及相關物理機理進行理論與試驗研究。
2005 –至今,換能器的非線性動力奔霸檔簽學研究(丹麥企業委託項目,國家自然科學基金項目,浙江省自然科學基金項目等):對電-機械換能器,磁-機械換能器等多種多物理場耦合的智慧型元器件,在大負載情循微笑況下的非線性動力學行為進行研究。從其非線性的物理機理出發,研究與非線性動力學相關的能量轉換效率,能量損失,換能器性能對負責及工作環境的依賴性等。對換能器在大負載情況下經常出現的滯回效應進行模擬與分析。
2002 -至今,形狀記憶合金的動力學模擬與分析(南丹麥大學博士後研究項目,中國國家自然基金項目,杭州電子科技大學專項基金等):對形狀記憶合金中的馬氏體相變和重定向過程進行模擬與分析,從細觀尺度上刻畫記憶合金獨特的動力學特性的物理本質。由此,在巨觀尺度上建立形狀記憶效應和超彈性效應的動態微分模型形。基於該動力學模型,對形狀記憶合金在減震、頻率調節方面的套用進行研究。
2000 - 2001,光催化反應器的建模、參數識別及最佳化(韓國國家自然科學基金項目):為實現光催化反應器內脫硫反應率的最佳化,對反應器內的流體流動過程以及相關的化學反應過程進行深入研究。建立起反應器的幾何形狀、流體流動過程、及脫硫反應率之間相互關係的模型。採用計算流體力學的方法對耦合的反應流動問題進行研究。用非線性最佳化方法對模型中的參數進行識別。由此對反應器的幾何參數進行最佳化,以期達到最優的脫硫效果。
1999 - 2000,冶金加熱爐升溫過程的最優控制:本項目為寶鋼研究院自動化所的博士後研究項目。研究目的為通過對加熱爐內升溫過程的最優控制,達到節省燃料的目的。基於對加熱爐內的流體流動、對流傳熱、鋼坯的熱傳導等過程的建模與分析,通過調節燃燒噴嘴的操作過程,達到用最少的燃料實現爐內板坯連續升溫的要求。
發明專利 (已授權)
1. 王林翔,欒宇,李昕. 一種複合式數字伺服執行器。(ZL 2016 1 0207652.1) 授權公告: 2017.08.01
2. 王林翔,李昕,陳惟峰立背欠戲. 一種帶有半主動閥的壓電泵 (ZL 2015 1 0003257.7) 授權公告:2017.02.01
3. 王林翔,吳庭,張誠,陳惟峰. 基於形狀記憶合金彈簧的超低頻液壓隔振裝置 (ZL 2015 1 0311826.4) . 授權公告:2017.01.25
4. 王林翔,吳庭,陳惟峰. 一種用於捷運制動能量的液壓儲存及釋放裝置 ( ZL 2015 1 0003341.9). 授權公告:2016.09.07
5. 王林翔,楊軍,張誠. 一種海洋溫差能發電裝置 ( ZL 2013 1 0615973.1) . 授權公告: 2016.07.06
6. 王林翔,陳惟峰,吳庭. 基於壓電陶瓷驅動的數字液壓泵. (ZL 2014 1 0114188.2). 授權公告:2016.06.29
7. 王林翔,張誠. 一種基於海水溫差的海底火上觀測儀表供電裝置. (ZL 2011 1 0389613.5)
8. 王林翔,周昌全,馮長水. 懸臂樑振動式鐵電發電裝置.(ZL 2009 2 01218 04.1), 授權公告:2012.02.24
9. 王林翔, 王振宇, 金方銀. 基於鐵電材料的吸聲減噪裝置. (ZL 2009 1 0155799.0),授權公告:2011.04.20
10. 王林翔,周昌全, 王振宇. 頻率可調的形狀記憶合金振動吸收器.( ZL 2010 2 0172552.8)授權公告:2011.04.13
11. 王林翔,李冰茹, 陳雙琳. 基於海浪能捕獲的海上儀器儀表供電裝置. (ZL 2009 2 0199442.8), 授權公告:2011.09.01
12. 王林翔,張誠,王耀光,基於磁流變液的傳動裝置. (ZL 2009 2 0122484.1), 授權公告:2010.10.20
13. 王林翔,金方銀, 王振宇. 基於壓電材料的梁振動頻率控制裝置. (ZL 2010 2 0200453.6),授權公告:2010.12.15
近幾年承擔的科研項目
  1. 企業合作開發項目: (2018.02 -2019.03 30)智慧型型裝甲靶顯控系統
  2. 企業合作開發項目:(2018.02 -2019.03 30) 智慧型型單兵訓練顯控系統
  3. 浙江省科技廳: 大功率密度高效率齒輪箱設計製造技術
  4. 大功率密度高效率齒輪箱設計製造技術創新團隊
  5. 國家自然基金面上項目(2016.01-2019.12):鐵電材料中聲波誘發電疇變的低頻吸聲機理研究。
  6. 國家自然基金面上項目(2016.01-2019.12):多UUV分散式自定位動態基。
  7. 企業合作開發項目(2017.01-2019.12):共建“油煙淨化機工業自動化裝備”聯合實驗室
  8. 企業合作開發項目(2013.09-2014.05):集成式電液執行機構。
  9. 企業合作開發項目(2013.02-2015.02):公共煙道複合式除油設備研發。
  10. 中央高校青年創新基金(2011.09-2012.09):基於智慧型結構的海洋仿生驅動系統的動力學與控制技術研究
  11. 國家自然基金面上項目(2009.01-2011.12):基於朗道相變理論的形狀記憶合金的熱彈性動力學與控制研究
  12. 流體傳動及控制國家重點實驗室開放基金(2009-2011):基於受控磁流變流體流動的高頻響大流量比例閥機理研究。
  13. 浙江省自然科學基金(2010.06-2012.06):水下壓電圓柱殼結構振動與近場聲場特性研究。
  14. 浙江省自然科學基金(2009.01-2010.12):基於受控磁流變流動的高頻響大流量比例閥研究,。
  15. 杭州電子科技大學特聘教授學科建設專項基金(2008.03-2011.03):智慧型材料、結構與元器件。
  16. 杭州電子科技大學啟動基金(2008.03-2011.03):形狀記憶合金的非線性動力學研究。
部分期刊論文
1. Dan Wang, LinxiangWang*, Roderick Melnik. Vibration energy harvesting based on stress-induced polarization switching a phase field approach. Smart Materials and Structures. 2017.015
2. 杜修全, 王林翔*, 王旦, 唐志峰. 基於唯象相變理論的磁致伸縮材料耦合滯回動力學模擬. 固體力學學報. 2017.04
3. 吳庭,王林翔. 複合式低頻隔振器的設計及其性能分析. 振動與衝擊, 2017.06
4. Dan Wang, LinxiangWang*, RoderickV.N.Melnik. A hysteresis model for ferroelectric ceramics with mechanism for minor loops, Physic Letters A. 2016, 381(4): 344–350.
5. 李昕,王林翔,陳惟峰. 液壓微位移放大器回響頻率的研究, 液壓與氣動, 2016,5:8-12
6. Dan Wang, LinxiangWang*, RoderickV.N.Melnik. A differential algebraic approach for the modeling of polycrystalline ferromagnetic hysteresis with sub-loops and frequency. Journal of Magnetism and Magnetic Materials. 2016,410:144–149
7. Dan Wang, LinxiangWang*, RoderickV.N.Melnik. A Preisach-type model based on differential operators for rate-de- pendent hysteretic dynamics. Physica B 470-471 (2015) 102–106
8. Cheng Zhang, Zhangwei Chen, LinxiangWang*. An investigation on the field strength and loading rate dependences of the hysteretic dynamics of magnetorheological dampers. Mech Time-Depend Mater (2015) 19:61–74
10. Linxiang Wang, Jun Yang, and Junbo Lei. Computational martensite re-orientation in shape memory alloys and the related hysteretic dynamics. Model. Simul. Mater. Sci. Eng. 2014, 22, 45006
11. Chen W F, Wang L X, Lv F Z. Modeling of the Stress-Dependent Hysteretic Dynamics of Ferroelectric Materials. 2014, the proceedings of the 5th International Conference on Manufacturing Science and Engineering, April 19-20, Shanghai, China. pp: 606-609.
12. 陳惟峰,王林翔,呂福在.基於壓電陶瓷驅動的微小型數字液壓泵綜述[J].液壓與氣動,2014,10(1):18-25.
14. Du Xiuquan, Wang Linxiang, Tang Zhifeng, Lv Fuzai,Modeling the rate dependent hysteretic dynamics of magnetostrictive transducers. 2104, 3rd International Conference on Mechanical Automation and Materials Engineering, June 28-29, Wuhan, China. pp: 312-316.
15. L.X.Wang, R.V.N. Melnik, Nonlinear dynamics of shape memory alloy oscillators in tuning structural vibration frequencies. Mechatronics 22 (2012)1085–1096.
17. Fangyin Jin, Rong Liu, Linxiang Wang. Comparison of Three Constitutive Models for the Analysis of Laminar Magnetorheological Fluid Flows. Advanced Materials Research. 2012 Vols. 378-379 : 151-156
18. L. X. Wang, RVN, Melnik, F. Z. Lv, Stress induced polarization switching and coupled hysteretic dynamics in ferroelectric materials, Frontiers of Mechanical Engineering, 2011. 6(3):287-291
19. Rong Liu, Linxiang Wang, Researches on Differential Model of Magnetorheological Dampers in the Dependence on the Loading Rates, Advanced Science Letters, 2011, Vol. 4, P: 814–818.
20. L. X. Wang, Numerical simulation of microstructure growth caused by twinning and detwinning in shape memory alloys, Acta Mechanica Solida Sinica, 2010,23(S.Issue): 204-209。
21. L. X. Wang, RVN, Melnik, Low dimensional approximations to ferroelastic dynamics and hysteretic behaviour due to phase transformations, ASME Trans, Journal of applied mechanics, 2010,77: 031015.
22. L. X. Wang, M. Willatzen, Extension of the Landau theory for hysteretic electric dynamics in ferroelectric ceramics, Journal of Electroceramics, 2010, 24(1):51-57
23. L. X. Wang, RVN, Melnik,Control of coupled hysteretic dynamics of ferroelectric materials with a Landau-type differential model and feedback linearization,Smart Materials & Structures, 2009, 18(7):074011.
24. L. X. Wang, M. Willatzen, Modelling of nonlinear dynamics for reciprocal multi-layer piezoceramic transducer systems, Applied Mathematical Modelling, 2009, 33:2263-2273.
25. L. X. Wang, R. Liu, R. V. N. Melnik, Modeling large reversible electric-field-induced strain in ferroelectric materials using 90o orientation switching, Sci China Ser E-Tech Sci (中國科學E輯英文版), 2009, 52(1): 141-147.
26. M. Willatzen, L. X. Wang, and L.C. Lew Yan Voon, Electrostriction in GaN/AlN heterostructures, Superlattices and Microstructures, 2008, 43(5-6): 436-440. (SCI)
27. L. X. Wang, R. V. N. Melnik, Modifying macroscale variant combinations in 2D structure using mechanical loadings during thermally induced transformation, Material Science and Engineering A, 2008, 481-482:190-193.
28. L. X. Wang, R. V. N. Melnik, Simulation of phase combinations in shape memory alloys patches by hybrid optimization methods, Applied Numerical Mathematics, 2008, 58 (4):511-524.
29. M. Willatzen, L.X. Wang, Mathematical modelling of one-dimensional piezoelectric transducers based on monoclinic crystals, Acta Acustica united with Acustica, 2007, 93 (5):716-721
30. L. X. Wang, R. V. N. Melnik, Thermo-mechanical wave propagation in shape memory alloy rod with phase transformations, Mechanics of Advanced Materials and Structures, 2007, 14 (8):665-676.
31. L. X. Wang, R. V. N. Melnik, Finite volume analysis of nonlinear thermo-mechanical dynamics of shape memory alloys, Heat and Mass Transfer, 2007, 43(6):535-546
32. L. X. Wang, R. V. N. Melnik, Numerical model for vibration damping resulting from the first order phase transformations, Applied Mathematical Modelling, 2007, 31:2008-2018.
33. L.X.Wang, and M. Willatzen, Nonlinear dynamical model For hysteresis based on non-convex potential energy, ASCE, Journal of Engineering Mechanics, 2007, 133(5):506-513.
34. L. X. Wang, R. V. N. Melnik, Model reduction applied to the square to rectangular martensite transformation using proper orthogonal decomposition, Applied Numerical Mathematics, 2007, 57:510-520.
35. L.X. Wang, M. Willatzen, Modelling of nonlinear responses for reciprocal transducers involving polarization switching, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(1):177-189.
36. L. X. Wang, R. V. N. Melnik, Mechanically induced phase combination by Chebyshev collocation methods, Material Science and Engineering A, 2006, 438-440 : 427-430.
37. L. X. Wang, R. V. N. Melnik, Dfferential-algebraic approach for coupled problems of dynamic thermoelasticity, Applied Mathematics and Mechanics, 2006, 27(9):1185-1196.
38. L. X. Wang, R. V. N. Melnik, Two-dimensional analysis of shape memory alloys under small loadings, International Journal of multiscale computational engineering, 2006, 4 (2):291-304.
39. L.X.Wang, H. Kamath, Modelling hysteretic behavior in magnetorheological fluids and dampers using phase-transition theory, Smart Materials and Structures, 2006, 15 (6):1725-1733.
40. L. X. Wang, R. V. N. Melnik, Dynamics of Shape memory alloy patches with mechanically induced transformations, Discrete and Continuous Dynamical System, 2006, 15 (4):1237- 1252.
41. P. Matus, R. V. N. Melnik, L. X. Wang, I. Rybak, Applications of fully conservative schemes in nonlinear thermoelasticity: modelling shape memory alloys, Mathematics and Computers in Simulation, 2004, 65(4-5):489-509.
42. L. X.Wang, R. V. N. Melnik, Dynamics of shape memory alloys patches, Materials Science and Engineering A, 2004,378(1-2):470-474.
2000 - 2001,光催化反應器的建模、參數識別及最佳化(韓國國家自然科學基金項目):為實現光催化反應器內脫硫反應率的最佳化,對反應器內的流體流動過程以及相關的化學反應過程進行深入研究。建立起反應器的幾何形狀、流體流動過程、及脫硫反應率之間相互關係的模型。採用計算流體力學的方法對耦合的反應流動問題進行研究。用非線性最佳化方法對模型中的參數進行識別。由此對反應器的幾何參數進行最佳化,以期達到最優的脫硫效果。
1999 - 2000,冶金加熱爐升溫過程的最優控制:本項目為寶鋼研究院自動化所的博士後研究項目。研究目的為通過對加熱爐內升溫過程的最優控制,達到節省燃料的目的。基於對加熱爐內的流體流動、對流傳熱、鋼坯的熱傳導等過程的建模與分析,通過調節燃燒噴嘴的操作過程,達到用最少的燃料實現爐內板坯連續升溫的要求。
發明專利 (已授權)
1. 王林翔,欒宇,李昕. 一種複合式數字伺服執行器。(ZL 2016 1 0207652.1) 授權公告: 2017.08.01
2. 王林翔,李昕,陳惟峰. 一種帶有半主動閥的壓電泵 (ZL 2015 1 0003257.7) 授權公告:2017.02.01
3. 王林翔,吳庭,張誠,陳惟峰. 基於形狀記憶合金彈簧的超低頻液壓隔振裝置 (ZL 2015 1 0311826.4) . 授權公告:2017.01.25
4. 王林翔,吳庭,陳惟峰. 一種用於捷運制動能量的液壓儲存及釋放裝置 ( ZL 2015 1 0003341.9). 授權公告:2016.09.07
5. 王林翔,楊軍,張誠. 一種海洋溫差能發電裝置 ( ZL 2013 1 0615973.1) . 授權公告: 2016.07.06
6. 王林翔,陳惟峰,吳庭. 基於壓電陶瓷驅動的數字液壓泵. (ZL 2014 1 0114188.2). 授權公告:2016.06.29
7. 王林翔,張誠. 一種基於海水溫差的海底火上觀測儀表供電裝置. (ZL 2011 1 0389613.5)
8. 王林翔,周昌全,馮長水. 懸臂樑振動式鐵電發電裝置.(ZL 2009 2 01218 04.1), 授權公告:2012.02.24
9. 王林翔, 王振宇, 金方銀. 基於鐵電材料的吸聲減噪裝置. (ZL 2009 1 0155799.0),授權公告:2011.04.20
10. 王林翔,周昌全, 王振宇. 頻率可調的形狀記憶合金振動吸收器.( ZL 2010 2 0172552.8)授權公告:2011.04.13
11. 王林翔,李冰茹, 陳雙琳. 基於海浪能捕獲的海上儀器儀表供電裝置. (ZL 2009 2 0199442.8), 授權公告:2011.09.01
12. 王林翔,張誠,王耀光,基於磁流變液的傳動裝置. (ZL 2009 2 0122484.1), 授權公告:2010.10.20
13. 王林翔,金方銀, 王振宇. 基於壓電材料的梁振動頻率控制裝置. (ZL 2010 2 0200453.6),授權公告:2010.12.15
近幾年承擔的科研項目
  1. 企業合作開發項目: (2018.02 -2019.03 30)智慧型型裝甲靶顯控系統
  2. 企業合作開發項目:(2018.02 -2019.03 30) 智慧型型單兵訓練顯控系統
  3. 浙江省科技廳: 大功率密度高效率齒輪箱設計製造技術
  4. 大功率密度高效率齒輪箱設計製造技術創新團隊
  5. 國家自然基金面上項目(2016.01-2019.12):鐵電材料中聲波誘發電疇變的低頻吸聲機理研究。
  6. 國家自然基金面上項目(2016.01-2019.12):多UUV分散式自定位動態基。
  7. 企業合作開發項目(2017.01-2019.12):共建“油煙淨化機工業自動化裝備”聯合實驗室
  8. 企業合作開發項目(2013.09-2014.05):集成式電液執行機構。
  9. 企業合作開發項目(2013.02-2015.02):公共煙道複合式除油設備研發。
  10. 中央高校青年創新基金(2011.09-2012.09):基於智慧型結構的海洋仿生驅動系統的動力學與控制技術研究
  11. 國家自然基金面上項目(2009.01-2011.12):基於朗道相變理論的形狀記憶合金的熱彈性動力學與控制研究
  12. 流體傳動及控制國家重點實驗室開放基金(2009-2011):基於受控磁流變流體流動的高頻響大流量比例閥機理研究。
  13. 浙江省自然科學基金(2010.06-2012.06):水下壓電圓柱殼結構振動與近場聲場特性研究。
  14. 浙江省自然科學基金(2009.01-2010.12):基於受控磁流變流動的高頻響大流量比例閥研究,。
  15. 杭州電子科技大學特聘教授學科建設專項基金(2008.03-2011.03):智慧型材料、結構與元器件。
  16. 杭州電子科技大學啟動基金(2008.03-2011.03):形狀記憶合金的非線性動力學研究。
部分期刊論文
1. Dan Wang, LinxiangWang*, Roderick Melnik. Vibration energy harvesting based on stress-induced polarization switching a phase field approach. Smart Materials and Structures. 2017.015
2. 杜修全, 王林翔*, 王旦, 唐志峰. 基於唯象相變理論的磁致伸縮材料耦合滯回動力學模擬. 固體力學學報. 2017.04
3. 吳庭,王林翔. 複合式低頻隔振器的設計及其性能分析. 振動與衝擊, 2017.06
4. Dan Wang, LinxiangWang*, RoderickV.N.Melnik. A hysteresis model for ferroelectric ceramics with mechanism for minor loops, Physic Letters A. 2016, 381(4): 344–350.
5. 李昕,王林翔,陳惟峰. 液壓微位移放大器回響頻率的研究, 液壓與氣動, 2016,5:8-12
6. Dan Wang, LinxiangWang*, RoderickV.N.Melnik. A differential algebraic approach for the modeling of polycrystalline ferromagnetic hysteresis with sub-loops and frequency. Journal of Magnetism and Magnetic Materials. 2016,410:144–149
7. Dan Wang, LinxiangWang*, RoderickV.N.Melnik. A Preisach-type model based on differential operators for rate-de- pendent hysteretic dynamics. Physica B 470-471 (2015) 102–106
8. Cheng Zhang, Zhangwei Chen, LinxiangWang*. An investigation on the field strength and loading rate dependences of the hysteretic dynamics of magnetorheological dampers. Mech Time-Depend Mater (2015) 19:61–74
10. Linxiang Wang, Jun Yang, and Junbo Lei. Computational martensite re-orientation in shape memory alloys and the related hysteretic dynamics. Model. Simul. Mater. Sci. Eng. 2014, 22, 45006
11. Chen W F, Wang L X, Lv F Z. Modeling of the Stress-Dependent Hysteretic Dynamics of Ferroelectric Materials. 2014, the proceedings of the 5th International Conference on Manufacturing Science and Engineering, April 19-20, Shanghai, China. pp: 606-609.
12. 陳惟峰,王林翔,呂福在.基於壓電陶瓷驅動的微小型數字液壓泵綜述[J].液壓與氣動,2014,10(1):18-25.
14. Du Xiuquan, Wang Linxiang, Tang Zhifeng, Lv Fuzai,Modeling the rate dependent hysteretic dynamics of magnetostrictive transducers. 2104, 3rd International Conference on Mechanical Automation and Materials Engineering, June 28-29, Wuhan, China. pp: 312-316.
15. L.X.Wang, R.V.N. Melnik, Nonlinear dynamics of shape memory alloy oscillators in tuning structural vibration frequencies. Mechatronics 22 (2012)1085–1096.
17. Fangyin Jin, Rong Liu, Linxiang Wang. Comparison of Three Constitutive Models for the Analysis of Laminar Magnetorheological Fluid Flows. Advanced Materials Research. 2012 Vols. 378-379 : 151-156
18. L. X. Wang, RVN, Melnik, F. Z. Lv, Stress induced polarization switching and coupled hysteretic dynamics in ferroelectric materials, Frontiers of Mechanical Engineering, 2011. 6(3):287-291
19. Rong Liu, Linxiang Wang, Researches on Differential Model of Magnetorheological Dampers in the Dependence on the Loading Rates, Advanced Science Letters, 2011, Vol. 4, P: 814–818.
20. L. X. Wang, Numerical simulation of microstructure growth caused by twinning and detwinning in shape memory alloys, Acta Mechanica Solida Sinica, 2010,23(S.Issue): 204-209。
21. L. X. Wang, RVN, Melnik, Low dimensional approximations to ferroelastic dynamics and hysteretic behaviour due to phase transformations, ASME Trans, Journal of applied mechanics, 2010,77: 031015.
22. L. X. Wang, M. Willatzen, Extension of the Landau theory for hysteretic electric dynamics in ferroelectric ceramics, Journal of Electroceramics, 2010, 24(1):51-57
23. L. X. Wang, RVN, Melnik,Control of coupled hysteretic dynamics of ferroelectric materials with a Landau-type differential model and feedback linearization,Smart Materials & Structures, 2009, 18(7):074011.
24. L. X. Wang, M. Willatzen, Modelling of nonlinear dynamics for reciprocal multi-layer piezoceramic transducer systems, Applied Mathematical Modelling, 2009, 33:2263-2273.
25. L. X. Wang, R. Liu, R. V. N. Melnik, Modeling large reversible electric-field-induced strain in ferroelectric materials using 90o orientation switching, Sci China Ser E-Tech Sci (中國科學E輯英文版), 2009, 52(1): 141-147.
26. M. Willatzen, L. X. Wang, and L.C. Lew Yan Voon, Electrostriction in GaN/AlN heterostructures, Superlattices and Microstructures, 2008, 43(5-6): 436-440. (SCI)
27. L. X. Wang, R. V. N. Melnik, Modifying macroscale variant combinations in 2D structure using mechanical loadings during thermally induced transformation, Material Science and Engineering A, 2008, 481-482:190-193.
28. L. X. Wang, R. V. N. Melnik, Simulation of phase combinations in shape memory alloys patches by hybrid optimization methods, Applied Numerical Mathematics, 2008, 58 (4):511-524.
29. M. Willatzen, L.X. Wang, Mathematical modelling of one-dimensional piezoelectric transducers based on monoclinic crystals, Acta Acustica united with Acustica, 2007, 93 (5):716-721
30. L. X. Wang, R. V. N. Melnik, Thermo-mechanical wave propagation in shape memory alloy rod with phase transformations, Mechanics of Advanced Materials and Structures, 2007, 14 (8):665-676.
31. L. X. Wang, R. V. N. Melnik, Finite volume analysis of nonlinear thermo-mechanical dynamics of shape memory alloys, Heat and Mass Transfer, 2007, 43(6):535-546
32. L. X. Wang, R. V. N. Melnik, Numerical model for vibration damping resulting from the first order phase transformations, Applied Mathematical Modelling, 2007, 31:2008-2018.
33. L.X.Wang, and M. Willatzen, Nonlinear dynamical model For hysteresis based on non-convex potential energy, ASCE, Journal of Engineering Mechanics, 2007, 133(5):506-513.
34. L. X. Wang, R. V. N. Melnik, Model reduction applied to the square to rectangular martensite transformation using proper orthogonal decomposition, Applied Numerical Mathematics, 2007, 57:510-520.
35. L.X. Wang, M. Willatzen, Modelling of nonlinear responses for reciprocal transducers involving polarization switching, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(1):177-189.
36. L. X. Wang, R. V. N. Melnik, Mechanically induced phase combination by Chebyshev collocation methods, Material Science and Engineering A, 2006, 438-440 : 427-430.
37. L. X. Wang, R. V. N. Melnik, Dfferential-algebraic approach for coupled problems of dynamic thermoelasticity, Applied Mathematics and Mechanics, 2006, 27(9):1185-1196.
38. L. X. Wang, R. V. N. Melnik, Two-dimensional analysis of shape memory alloys under small loadings, International Journal of multiscale computational engineering, 2006, 4 (2):291-304.
39. L.X.Wang, H. Kamath, Modelling hysteretic behavior in magnetorheological fluids and dampers using phase-transition theory, Smart Materials and Structures, 2006, 15 (6):1725-1733.
40. L. X. Wang, R. V. N. Melnik, Dynamics of Shape memory alloy patches with mechanically induced transformations, Discrete and Continuous Dynamical System, 2006, 15 (4):1237- 1252.
41. P. Matus, R. V. N. Melnik, L. X. Wang, I. Rybak, Applications of fully conservative schemes in nonlinear thermoelasticity: modelling shape memory alloys, Mathematics and Computers in Simulation, 2004, 65(4-5):489-509.
42. L. X.Wang, R. V. N. Melnik, Dynamics of shape memory alloys patches, Materials Science and Engineering A, 2004,378(1-2):470-474.

相關詞條

熱門詞條

聯絡我們