王學欽,男,1975年6月生。出生於福建省福州市長樂區航城街道里仁村。中山大學數學與計算科學學院和中山醫學院雙聘教授,博士生導師。中山大學生物醫學信息實驗室課題組長(Principal Investigator),統計科學系副主任,中山大學附屬第一醫院特聘教授,《the Journal of Global Infectious Diseases》的編委和《中華預防醫學》的審稿人。
1. Peng H, Wang S, andWang X (2008) Consistency and asymptotic distribution of the Theil–Sen estimator,Journal of Statistical Planning and Inference, 138/6, 1836-185.
2. Wang X and Peng H (2008) Moment Estimation in Semiparametric Generalized Linear Models, Statistics & Probability Letters 78:1624–1633.
3. Zhang H, Ye Y,Wang X, Gelernter J, Ma JZ, and Li MD (2006) DOPA Decarboxylase (DDC) Gene Is Associated with Nicotine Dependence.Pharmacogenomics 7(8), 1159-66.
4. Wang X, Ye Y, and Zhang H (2006) Family-based Association Tests for Ordinal Traits Adjusting for Covariates,Genetic Epidemiology, 30(8): 728-36.
5. Zhang H, Wang X,and Ye Y (2006) Detection of Genes for Ordinal Traits in Nuclear Families and a Unified Approach for Association Studies. Genetics, 172, 693-99.
6. Wang X and Yu Q (2005) Unbiasedness of the Theil-Sen Estimator, Journal of Nonparametric Statistic, 17, No.6, 685-95.
7. Wang X* (2005) Asymptotics of the Theil-Sen Estimator in a Simple Linear Regression Model with a Random Covariate.Journal of Nonparametric Statistics, 17, No.1, 107-120.
8. Li X,Wang X*, and Wei B (2004) On the Lower and Upper Bounds for General Randic Index of Chemical (n,m)-graphs. MATCH. Communications in Mathematical and in Computer Chemistry, No. 52, 157-66.
9. Dang X, Peng H, and Wang X Mixing Binomial Distribution with Completely Monotonic Functions and Applications in Modeling Correlated Data, Statist. in Medicine, accepted.
10. Zhang H, Liu CT, and Wang XAn association test for multiple traits based on the generalized kendall’s Tau, JASA, accepted.
11. Beck M,Wang X, and Zaslavsky T (2006) A Unifying Generalization of Sperner's Theorem. Ervin Gyori, Gyula O.H. Katona, and Laszlo Lovasz, eds., More Sets, Graphs and Numbers: A Salute to Vera Sos and Andras Hajnal. Bolyai Society Mathematical Studies, Vol. 15, pp. 9-24. Springer, Berlin, and Janos Bolyai Mathematical Society, Budapest.