簡介
物理圖譜(Physics Map):物理圖譜描繪DNA上可以識別的標記的位置和相互之間的距離(以鹼基對的數目為衡量單位),這些可以識別的標記包括限制性內切酶的酶切位點,基因等。物理圖譜不考慮兩個標記共同遺傳的
機率等信息。對於
人類基因組來說,最粗的物理圖譜是染色體的條帶染色模式,最精細的圖譜是測出DNA的完整鹼基序列。
目的
將獲得的目的基因的cDNA克隆,進行測序,確定兩端的cDNA序列,約200bp,設計合成引物,並分別利用cDNA和基因組DNA作模板擴增;比較並純化特異帶;利用
STS製備放射性探針與基因組進行原位雜交,使每隔100kb就有一個標誌;二是在此基礎上構建覆蓋每條染色體的大片段:首先是構建數百kb的YAC(酵母人工染色體),對YAC進行作圖,得到重疊的YAC連續克隆系,被稱為低精度物理作圖,然後在幾十個kb的DNA片段水平上進行,將
YAC隨機切割後裝入粘粒的作圖稱為高精度物理作圖。
特性
因限制性內切酶在DNA鏈上的切口是以特異序列為基礎的,核苷酸序列不同的DNA,經酶切後就會產生不同長度的DNA片段,由此而構成獨特的酶切圖譜。因此,DNA物理圖譜是DNA
分子結構的特徵之一。DNA是很大的分子,由限制酶產生的用於
測序反應的DNA片段只是其中的極小部分,這些片段在DNA鏈中所處的位置關係是應該首先解決的問題,故DNA物理圖譜是順序測定的基礎,也可理解為指導DNA測序的藍圖。廣義地說,DNA測序從物理圖譜製作開始,它是測序工作的第一步。製作DNA物理圖譜的方法有多種,這裡選擇一種常用的簡便方法──標記片段的部分
酶解法,來說明圖譜製作原理。
步驟
用部分酶解法測定DNA物理圖譜包括兩個基本步驟:
(1)完全降解:選擇合適的限制性內切酶將待測DNA鏈(已經標記放射性同位素)完全降解,
降解產物經凝膠電泳分離後進行自顯影,獲得的圖譜即為組成該DNA鏈的酶切片段的數目和大小。
(2)部分降解:以
末端標記使待測DNA的一條鏈帶上示蹤
同位素,然後用上述相同酶部分降解該DNA鏈,即通過控制反應條件使DNA鏈上該酶的切口隨機斷裂,而避免所有切口斷裂的完全降解發生。部分酶解產物同樣進行電泳分離及自顯影。比較上述二步的自顯影圖譜,根據片段大小及彼此間的差異即可排出酶切片段在DNA鏈上的位置。下面是測定某
組蛋白基因DNA物理圖譜的詳細說明。
產生
該基因全長5900bp,用限制酶HpaⅡ完全降解該DNA可產生五個大小不等的片段,電泳分離並參照已知分子量的標準DNA帶,得知這些片段的大小分別為1930、1690、1020、950和310bp。不難推測該DNA上有四個HpaⅡ切口,但切口的位置和這五個片段在完整
基因中的排列順序此時尚無法知道。接著將
末端標記的該DNA片段進行HpaⅡ的部分降解,由於各切口隨機斷裂,產生的片段數顯然會多於完全
降解產物。但電泳後的自顯影圖上只可能出現末端標記的DNA片段。若以待測DNA在左端為標記處,那么自顯影圖上將呈現4210、3260、2950和1020bp四條帶。其中最小片段(1020bp)與完全降解產物為同一片段,它應定位於該
基因的左端;而最大片段(4210bp)與完整基因(5900bp)之差的片段(1690bp)無疑應定位於該基因的右端;餘下的三個片段(1930、930和310bp)的定位,根據部分酶解的相鄰片段之差很易確定。據此推出的這五個片段在該基因上的排列順序是(左→右):1020-1930-310-950-1690。物理圖譜與DNA
測序的原理頗為相似,二者是通過片段長度來推測位置,所不同的是測序確定
核苷酸(
鹼基)的位置,而此處是確定某個片段的位置。DNA物理圖譜測定後,便可對每一酶切片段進行核苷酸順序分析。在測定了所有片段的DNA順序後,根據物理圖譜將各片段"拼湊"起來就得出了待測DNA鏈的全部核苷酸順序。基因的全順序測定才是我們要達到目的,一般人類基因的長度都在10Kb以上,巨大基因可長達200Kb,要完成基因的全順序測定需進行大量的工作。完成這些工作可採取多種不同的方法,但其基本思路是一致的,即在確定物理圖譜的基礎上,再進行DNA順序測定。