牛津大學研究生教材系列·現代經典光學

牛津大學研究生教材系列·現代經典光學

《牛津大學研究生教材系列·現代經典光學》是一本布魯克編制,由科學出版社在2009年1月1日出版的書籍。

基本介紹

  • 書名:牛津大學研究生教材系列·現代經典光學
  • 出版社:科學出版社
  • 出版時間:2009年1月1日
  • 開本:16
圖書信息,作者簡介,內容簡介,目錄,

圖書信息

外文書名: Modern Classical Optics
叢書名: 牛津大學研究生教材系列
平裝: 395頁
正文語種: 簡體中文, 英語
ISBN: 9787030236234
條形碼格試: 9787030236234
尺寸: 24.2 x 18.6 x 2.2 cm
重量: 699 g

作者簡介

作敬擔永者:(英國)布魯克 (Brooker.G)

內容簡介

《現代經典光學》從現代的視角描述了經典光學,也可稱為“半經典元主定光學”。書中內容大都與經典光學相關,包含了相關的現象、儀器和技術,以及一些常見的主題:衍射、干涉、薄膜和全息光學,也涉及了高斯光束.雷射催悼驗腔、cD閱讀器和共焦顯微鏡。涉及少量的量子光學。《現代經典光學》內容豐戲朽精格富、新穎,講解透徹,各章最後均附有相關習題,書末附有部分習題的解答,可供高年級本科生及低年級研究生參閱,也可作為相關領域研究人員的參考書。
《現代經典光學》作者為牛津大學物理系的嫌棵婚Geoffrey Brooker。

目錄

1 Electromagnetism and basic optics
1.1 Introduction
1.2 The Maxwell eqiations
1.3 Linear isotropic media
1.4 Plane electromagnetic waves
1.5 Energy flow
1.6 Scalar wave amplitudes
1.7 Dispersive media
1.8 Electrical transmission lines
1.9 Elementary(滲設道欠ray)optics
1.9.1 The thin lens
1.9.2 Sign conventions
1.9.3 Refraction at a spherical surface
1.9.4 The thick lens
1.10 Rays and waves
Problems
2 Fourier series and Fourier transforms
2.1 Introduction
2.2 Fourier series:spectrum of a periodic waveform
2.3 Fourier series:a mathematical reshape
2.4 The Fourier transform:spectrum of a non-periodic waveform
2.5 The analytic signal
2.6 The Dirac nction
2.7 Frequency and angular frequency
2.8 The power spectrum
2.9 Examples of Fourier transforms
2.9.1 A single rectangular pulse
2.9.2 The double pulse
2.9.3 A
2.9.4 A regular array of
2.9.5 A random array of
2.9.6 An infinite sinewave
2.10 Convolution and the convolution theorem
2.11 Examples of convoltion
2.12 Sign choices with Fourier transforms
problems
3 Diffraction
3.1 Introduction
3.2 Monochromatic spherical wave
3.3 The Kirchhoff diffraction integral
3.4 The Kirchhoff boundary conditions
3.5 Simplifying the Kirchhoff inregral
3.6 Complementary screens:the Babinet principle
3.7 The Fraunhofer condition I:provisional
3.8 Fraunhofer diffraction in'one dimension'
3.9 Fraunhofer diffraction in'two dimensions'
3.10 Two ways of looking at diffraction
3.11 Examples of Fraunhofer diffraction
3.12 Fraunhofer diffraction and Fourier transforms
3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
3.14 The Fraunhofer condition Ⅲ:object and image
3.15 The Fresnel case of diffraction
3.16 Fraunhofer diffraction and optical resolution
3.17 Surfaces whose fields are related by a Fourier transform
3.18 Kirchhoff boundary conditions:a harder look
Problems
4 Diffraction gratings
4.1 Introduction
4.2 A basic transmission grating
4.3 The multiple-element pattern
4.4 Reflection grating
4.5 Blazing
4.6 Grating spectrometric instruments
4.7 Spectroscopic resolution
4.8 Making gratings
4.9 Tricks of the trade
4.9.1 Normal spectrum
4.9.2 Correct illumination
4.9.3 Shortening exposure times with a spectrograph
4.9.4 Vacuum instruments
4.9.5 Double monochromator
4.9.6 An inventor's paradise
4.10 Beyond the simple theory
Problems
5 The Fabry-Perot
5.1 Introduction
5.2 Elementary theory
5.3 Basic apparatus
5.4 The meaning of finesse
5.5 Free spectral range and resolution
5.5.1 Free spectral range
5.5.2 Resolution
5.6 Analysis of an étalon fringe pattern
5.7 Flatness and parallelism of Fabry-Perot plates
5.8 Designing a Fabry-Perot to do a job
5.9 Practicalities of spectroscopy using a Fabry-Perot
5.10 The Fabry-Perot as a source of ideas
Problems
6 Thin films
6.1 Introduction
6.2 Basic calculation for one layer
6.3 Matrix elimination of'middle'amplitudes
6.4 Reflected and transmitted Waves
6.5 Impedance concepts
6.6 High-reflectivity mirrors
6.7 Anti-reflection coatings
6.8 Interference filters
6.9 Practicalities of thin-film deposition
Problems
7 Ray matrices and Gaussian beams
7.1 Introduction
7.2 Matrix methods in ray optics
7.3 Matrices for translation and refraction
7.4 Reflections
7.5 Spherical waves
7.6 Gaussian beams
7.7 Properties of a Gaussian beam
7.8 Sign conventions
7.9 Propagation of a Gaussian beam
7.10 Electric and magnetic fields
Problems
8 Optical cavities
8.1 Introduction
8.2 Gauss-Hermite beams
8.3 Cavity resonator
8.4 Cavity modes
8.5 The condition for a low-loss mode
8.6 Finding the mode shape for a cavity
8.7 Longitudinal modes
8.8 High-loss cavities
8.9 The symmetrical confocal cavity
8.10 The confocal Fabry-Perot
8.11 Choice of cavity geometry for a laser
8.12 Selection of a desired transverse mode
8.13 Mode matching
Problems
9 Coherence:qualitative
9.1 Introduction
9.2 Terminology
9.3 Young fringes:tolerance to frequency range
9.4 Young fringes:tolerance to collimation
9.5 Coherence area
9.6 The Michelson stellar interferometer
9.7 Aperture synthesis
9.8 Longitudinal and transverse coherence
9.9 Interference of two parallel plane waves
9.10 Fast and slow detectors
9.11 Coherence time and coherence length
9.12 A Michelson interferometer investigating longitudinal coherence
9.13 Fringe visibility
9.14 Orders of magnitude
9.15 Discussion
9.15.1 What of lasers?
9.15.2 The Young slits:another look
9.15.3 Fast and slow detectors:another look
9.15.4 Grating monochromator:another look
9.15.5 Polarized and unpolarized light
Problems
10 Coherence:correlation functions
10.1 Introduction
10.2 Correlation function:definition
10.3 Autocorrelation and the Michelson interferometer
10.4 Normalized autocorrelation function
10.5 Fringe visibility
10.6 The Wiener-Khintchine theorem
10.7 Fourier transform spectroscopy
10.8 Partial coherence:transverse
10.9 The van Cittert-Zernike theorem
10.10 Intensity correlation
10.11 Chaotic light and laser light
10.12 The Hanbury Brown-Twiss experiment
10.13 Stellar diameters measured by intensity correlation
10.14 Classical and quantum optics
Problems
11 Optical practicalities:étendue,interferometry,fringe localization
11.1 Introduction
11.2 Energy flow:étendue and radiance
11.3 Conservation of étendue and radiance
11.4 Longitudinal and transverse modes
11.5 étendue and coherence area
11.6 Field modes and entropy
11.7 Radianee of some optical sources
11.7.1 Radiance of a black body
11.7.2 Radiance of a gas-discharge lamp
11.7.3 Radiance of a light-emitting diode (LED)
11.8 étendue and interferometers
11.9 大Etendue and spectrometers
11.10 A design study:a Fourier-transform spectrometer
11.11 Fringe locahzation
Problems
12 Image formation:diffraction theory
12.1 Introduction
12.2 Image formation with transversely Coherent illumination informal
12.3 Image formation:ideal optical system
12.4 Image formation:imperfect optical system
12.5 Microscope resolution:Abbe theory
12.5.1 Abbe theory:introduction
12.5.2 Abbe theory:explanation
12.6 Improving the basic microscope
12.7 Phase contrast
12.8 Dark-ground illumination
12.9 Schlieren
12.10 Apodizing
12.11 Holography
12.12 The point spread function
12.13 Optical transfer function;modulation transfer function
Problems
13 Holography
13.1 Introduction
13.2 Special case:plane-wave obiect beam and plane-wave reference beam
13.3 The intensity of the reference beam
13.4 The response of a photographic emulsion
13.5 The theory of holography
13.6 Formatiol of an image
13.7 What if we break a hologram in half?
13.8 Replay with changed optical geometry
13.9 The effect of a thick photographic emulsion
13.10 Phase holograms
13.11 Gabor's holograms
13.12 Practicalities
13.13 Applications of holography
Problems
14 Optical fibres
14.1 Introduction
14.2 Fibre optics:basics
14.3 Transverse modes
14.4 Dispersion
14.4.1 Material dispersion
14.4.2 Intermodal and intramodal dispersion
14.5 Multimode fibres
14.6 Single-mode fibres
Problems
15 Polarization
15.1 Introduction
15.2 Anisotropic media
15.3 The mathematics of anisotropy
15.4 The understanding of tensor錳j
15.5 The Faraday effect
15.6 Optical activity
Problems
16 Two modern optical devices
16.1 Introduction
16.2 Compact disc:description of the disc
16.3 Compact disc:the encoding scheme
16.4 Optics of reading a compact disc
16.5 Feedback systems
16.5.1 Correction of tracking
16.5.2 Correction of focus
16.6 CD-ROM
16.7 DVD
16.8 The confocal microscope
16.9 Confocal microscope:resolution
16.10 The confocal microscope:depth of focus
Problems
Notes on selected problems
Bibliography
Index
2.6 The Dirac nction
2.7 Frequency and angular frequency
2.8 The power spectrum
2.9 Examples of Fourier transforms
2.9.1 A single rectangular pulse
2.9.2 The double pulse
2.9.3 A
2.9.4 A regular array of
2.9.5 A random array of
2.9.6 An infinite sinewave
2.10 Convolution and the convolution theorem
2.11 Examples of convoltion
2.12 Sign choices with Fourier transforms
problems
3 Diffraction
3.1 Introduction
3.2 Monochromatic spherical wave
3.3 The Kirchhoff diffraction integral
3.4 The Kirchhoff boundary conditions
3.5 Simplifying the Kirchhoff inregral
3.6 Complementary screens:the Babinet principle
3.7 The Fraunhofer condition I:provisional
3.8 Fraunhofer diffraction in'one dimension'
3.9 Fraunhofer diffraction in'two dimensions'
3.10 Two ways of looking at diffraction
3.11 Examples of Fraunhofer diffraction
3.12 Fraunhofer diffraction and Fourier transforms
3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
3.14 The Fraunhofer condition Ⅲ:object and image
3.15 The Fresnel case of diffraction
3.16 Fraunhofer diffraction and optical resolution
3.17 Surfaces whose fields are related by a Fourier transform
3.18 Kirchhoff boundary conditions:a harder look
Problems
4 Diffraction gratings
4.1 Introduction
4.2 A basic transmission grating
4.3 The multiple-element pattern
4.4 Reflection grating
4.5 Blazing
4.6 Grating spectrometric instruments
4.7 Spectroscopic resolution
4.8 Making gratings
4.9 Tricks of the trade
4.9.1 Normal spectrum
4.9.2 Correct illumination
4.9.3 Shortening exposure times with a spectrograph
4.9.4 Vacuum instruments
4.9.5 Double monochromator
4.9.6 An inventor's paradise
4.10 Beyond the simple theory
Problems
5 The Fabry-Perot
5.1 Introduction
5.2 Elementary theory
5.3 Basic apparatus
5.4 The meaning of finesse
5.5 Free spectral range and resolution
5.5.1 Free spectral range
5.5.2 Resolution
5.6 Analysis of an étalon fringe pattern
5.7 Flatness and parallelism of Fabry-Perot plates
5.8 Designing a Fabry-Perot to do a job
5.9 Practicalities of spectroscopy using a Fabry-Perot
5.10 The Fabry-Perot as a source of ideas
Problems
6 Thin films
6.1 Introduction
6.2 Basic calculation for one layer
6.3 Matrix elimination of'middle'amplitudes
6.4 Reflected and transmitted Waves
6.5 Impedance concepts
6.6 High-reflectivity mirrors
6.7 Anti-reflection coatings
6.8 Interference filters
6.9 Practicalities of thin-film deposition
Problems
7 Ray matrices and Gaussian beams
7.1 Introduction
7.2 Matrix methods in ray optics
7.3 Matrices for translation and refraction
7.4 Reflections
7.5 Spherical waves
7.6 Gaussian beams
7.7 Properties of a Gaussian beam
7.8 Sign conventions
7.9 Propagation of a Gaussian beam
7.10 Electric and magnetic fields
Problems
8 Optical cavities
8.1 Introduction
8.2 Gauss-Hermite beams
8.3 Cavity resonator
8.4 Cavity modes
8.5 The condition for a low-loss mode
8.6 Finding the mode shape for a cavity
8.7 Longitudinal modes
8.8 High-loss cavities
8.9 The symmetrical confocal cavity
8.10 The confocal Fabry-Perot
8.11 Choice of cavity geometry for a laser
8.12 Selection of a desired transverse mode
8.13 Mode matching
Problems
9 Coherence:qualitative
9.1 Introduction
9.2 Terminology
9.3 Young fringes:tolerance to frequency range
9.4 Young fringes:tolerance to collimation
9.5 Coherence area
9.6 The Michelson stellar interferometer
9.7 Aperture synthesis
9.8 Longitudinal and transverse coherence
9.9 Interference of two parallel plane waves
9.10 Fast and slow detectors
9.11 Coherence time and coherence length
9.12 A Michelson interferometer investigating longitudinal coherence
9.13 Fringe visibility
9.14 Orders of magnitude
9.15 Discussion
9.15.1 What of lasers?
9.15.2 The Young slits:another look
9.15.3 Fast and slow detectors:another look
9.15.4 Grating monochromator:another look
9.15.5 Polarized and unpolarized light
Problems
10 Coherence:correlation functions
10.1 Introduction
10.2 Correlation function:definition
10.3 Autocorrelation and the Michelson interferometer
10.4 Normalized autocorrelation function
10.5 Fringe visibility
10.6 The Wiener-Khintchine theorem
10.7 Fourier transform spectroscopy
10.8 Partial coherence:transverse
10.9 The van Cittert-Zernike theorem
10.10 Intensity correlation
10.11 Chaotic light and laser light
10.12 The Hanbury Brown-Twiss experiment
10.13 Stellar diameters measured by intensity correlation
10.14 Classical and quantum optics
Problems
11 Optical practicalities:étendue,interferometry,fringe localization
11.1 Introduction
11.2 Energy flow:étendue and radiance
11.3 Conservation of étendue and radiance
11.4 Longitudinal and transverse modes
11.5 étendue and coherence area
11.6 Field modes and entropy
11.7 Radianee of some optical sources
11.7.1 Radiance of a black body
11.7.2 Radiance of a gas-discharge lamp
11.7.3 Radiance of a light-emitting diode (LED)
11.8 étendue and interferometers
11.9 大Etendue and spectrometers
11.10 A design study:a Fourier-transform spectrometer
11.11 Fringe locahzation
Problems
12 Image formation:diffraction theory
12.1 Introduction
12.2 Image formation with transversely Coherent illumination informal
12.3 Image formation:ideal optical system
12.4 Image formation:imperfect optical system
12.5 Microscope resolution:Abbe theory
12.5.1 Abbe theory:introduction
12.5.2 Abbe theory:explanation
12.6 Improving the basic microscope
12.7 Phase contrast
12.8 Dark-ground illumination
12.9 Schlieren
12.10 Apodizing
12.11 Holography
12.12 The point spread function
12.13 Optical transfer function;modulation transfer function
Problems
13 Holography
13.1 Introduction
13.2 Special case:plane-wave obiect beam and plane-wave reference beam
13.3 The intensity of the reference beam
13.4 The response of a photographic emulsion
13.5 The theory of holography
13.6 Formatiol of an image
13.7 What if we break a hologram in half?
13.8 Replay with changed optical geometry
13.9 The effect of a thick photographic emulsion
13.10 Phase holograms
13.11 Gabor's holograms
13.12 Practicalities
13.13 Applications of holography
Problems
14 Optical fibres
14.1 Introduction
14.2 Fibre optics:basics
14.3 Transverse modes
14.4 Dispersion
14.4.1 Material dispersion
14.4.2 Intermodal and intramodal dispersion
14.5 Multimode fibres
14.6 Single-mode fibres
Problems
15 Polarization
15.1 Introduction
15.2 Anisotropic media
15.3 The mathematics of anisotropy
15.4 The understanding of tensor錳j
15.5 The Faraday effect
15.6 Optical activity
Problems
16 Two modern optical devices
16.1 Introduction
16.2 Compact disc:description of the disc
16.3 Compact disc:the encoding scheme
16.4 Optics of reading a compact disc
16.5 Feedback systems
16.5.1 Correction of tracking
16.5.2 Correction of focus
16.6 CD-ROM
16.7 DVD
16.8 The confocal microscope
16.9 Confocal microscope:resolution
16.10 The confocal microscope:depth of focus
Problems
Notes on selected problems
Bibliography
Index

相關詞條

熱門詞條

聯絡我們