《深度學習之人臉圖像處理:核心算法與案例實戰》一書由機械工業出版社出版,作者言有三,真名龍鵬,先後在奇虎360人工智慧研究院和陌陌深度學習實驗室從事計算機視覺相關工作,積累了豐富的傳統圖像處理算法研究心得和深度學習項目實戰經驗。深度學習在產業界的崛起始於ImageNet。中國在人臉圖像套用領域也走在了世界前沿,屢屢斬獲全球大賽冠軍獎項。但是業界還是缺乏系統地講解人臉圖像核心算法理論和實踐的書籍。本書的出版豐富和充實了基於深度學習的人臉圖像處理類圖書市場。
基本介紹
- 書名:深度學習之人臉圖像處理:核心算法與案例實戰
- 作者:言有三
- 出版社:機械工業出版社
- 出版時間:2020年7月
- 頁數:384 頁
- 定價:119 元
- 開本:16 開
- 裝幀:平裝
- ISBN:9787111660255
內容簡介,圖書目錄,出版背景,作者簡介,
內容簡介
本書由淺入深、全面系統地介紹人臉圖像的各個研究方向和套用場景,包括但不限於基於深度學習的各個方向的核心技術。本書理論體系完備,講解時提供大量實例,可供讀者實戰演練。本書涵蓋的內容非常廣泛,從基本的人臉數據集發展歷史和人臉檢測開始,分別講述在此基礎上進行的人臉圖像處理的相關技術與套用,涉及身份識別、安全認證、人機互動和娛樂社交等領域。
本書共11章,涵蓋的主要內容有人臉圖像與特徵基礎、深度學習基礎、人臉數據集、人臉檢測、人臉關鍵點檢測、人臉識別、人臉屬性識別、人臉屬性分割、人臉美顏與美妝、人臉三維重建及人臉屬性編輯。
本書適合計算機視覺領域的初學者及所有在人臉圖像算法領域想要有所提高的工程技術人員、學生及教職工閱讀。讀者既可以將本書作為核心算法書籍學習理論知識,也可以將本書作為工程參考手冊查閱相關技術。
圖書目錄
第1章 人臉圖像與特徵基礎 1
1.1 人臉圖像基礎 1
1.1.1 人臉圖像的特點 1
1.1.2 人臉圖像的套用 2
1.2 人臉特徵基礎 2
1.2.1 幾何特徵 3
1.2.2 顏(膚)色特徵 3
1.2.3 紋理特徵 5
1.3 人臉圖像工程常用的機器學習算法 8
1.3.1 SVM簡介 8
1.3.2 AdaBoost簡介 12
第2章 深度學習基礎 15
2.1 神經網路 15
2.1.1 神經元模型 15
2.1.2 感知機 16
2.1.3 BP算法 17
2.2 卷積神經網路基礎 20
2.2.1 卷積操作 20
2.2.2 反卷積操作 21
2.2.3 卷積神經網路的基本概念 22
2.2.4 卷積神經網路的核心思想 24
2.2.5 卷積神經網路基本結構配置 25
2.3 深度學習最佳化基礎 28
2.3.1 激活模型與常用激活函式 29
2.3.2 參數初始化方法 35
2.3.3 歸一化方法 37
2.3.4 池化 42
2.3.5 最最佳化方法 43
2.3.6 學習率策略 47
2.3.7 正則化方法 50
2.4 深度學習主流開源框架介紹 53
2.4.1 Caffe簡介 54
2.4.2 TensorFlow簡介 54
2.4.3 PyTorch簡介 55
2.4.4 Theano簡介 56
2.4.5 Keras簡介 56
2.4.6 MXNet簡介 57
2.4.7 Chainer簡介 57
參考文獻 58
第3章 人臉數據集 60
3.1 人臉檢測數據集 60
3.1.1 通用人臉檢測數據集 60
3.1.2 複雜人臉檢測數據集 62
3.2 關鍵點檢測數據集 63
3.3 人臉識別數據集 65
3.3.1 人臉識別圖像數據集 65
3.3.2 人臉識別視頻數據集 69
3.3.3 三維人臉識別數據集 69
3.3.4 人臉識別其他數據集 70
3.4 人臉屬性分析數據集 70
3.4.1 通用人臉屬性分析數據集 70
3.4.2 人臉表情數據集 71
3.4.3 人臉年齡與性別數據集 73
3.4.4 人臉分割數據集 74
3.4.5 人臉顏值數據集 76
3.4.6 人臉妝造數據集 76
3.5 人臉姿態與3D數據集 77
3.5.1 人臉姿態數據集 77
3.5.2 人臉三維重建數據集 78
3.6 人臉活體與偽造數據集 79
3.6.1 人臉活體數據集 79
3.6.2 人臉偽造數據集 81
3.7 人臉風格化數據集 81
第4章 人臉檢測 83
4.1 目標檢測基礎 83
4.1.1 目標檢測基本流程 83
4.1.2 選擇檢測視窗 84
4.1.3 提取圖像特徵 84
4.1.4 設計分類器 85
4.2 經典人臉檢測算法 86
4.2.1 人臉檢測問題 87
4.2.2 人臉膚色模型 87
4.2.3 人臉形狀模型與模板匹配 88
4.2.4 特徵分類算法 88
4.2.5 DPM方法 91
4.3 深度學習通用目標檢測方法 93
4.3.1 OverFeat方法 94
4.3.2 Selective search與R-CNN方法 94
4.3.3 SPPNet與Fast R-CNN方法 96
4.3.4 Faster R-CNN與R-FCN方法 99
4.3.5 YOLO方法 101
4.3.6 SSD方法 104
4.3.7 基於角點的檢測方法 105
4.3.8 目標檢測中的幾個關鍵技術和難點 106
4.4 深度學習人臉檢測核心技術 109
4.4.1 人臉組件算法 109
4.4.2 級聯檢測算法 110
4.4.3 多尺度人臉檢測算法 114
4.4.4 遮擋人臉檢測算法 118
4.4.5 活體與偽造人臉檢測算法 119
4.5 實戰Faster R-CNN人臉檢測 120
4.5.1 項目背景 120
4.5.2 py-faster-rcnn框架解讀 120
4.5.3 模型定義與分析 134
4.5.4 模型訓練 143
4.5.5 模型測試 144
參考文獻 146
第5章 人臉關鍵點檢測 149
5.1 關鍵點檢測基礎 149
5.1.1 關鍵點的定義 149
5.1.2 關鍵點的點數發展 150
5.1.3 關鍵點檢測算法評價 153
5.1.4 人臉姿態 154
5.2 傳統人臉關鍵點檢測方法 154
5.2.1 ASM、AAM與CLM算法 155
5.2.2 級聯形狀回歸算法 157
5.3 深度學習方法 158
5.3.1 級聯框架 158
5.3.2 多任務聯合框架 160
5.3.3 遮擋與大姿態問題 162
5.4 實時人臉關鍵點檢測實踐 163
5.4.1 數據集和基準模型 163
5.4.2 模型訓練 164
5.4.3 模型測試 169
5.5 小結 171
參考文獻 171
第6章 人臉識別 173
6.1 人臉識別基礎 173
6.1.1 人臉識別基本流程 173
6.1.2 人臉識別評估 173
6.1.3 傳統人臉識別特徵 174
6.2 深度學習人臉識別核心技術 177
6.2.1 度量學習 177
6.2.2 多類別分類學習 180
6.2.3 人臉分類最佳化目標的發展 182
6.3 人臉識別算法面臨的挑戰和未來 186
6.3.1 遮擋人臉識別 186
6.3.2 跨姿態人臉識別 187
6.3.3 跨年齡人臉識別 188
6.3.4 妝造不變人臉識別 189
6.3.5 異質源人臉識別 190
6.3.6 其他問題 190
6.3.7 小結 191
6.4 實戰人臉識別模型訓練 192
6.4.1 數據準備與接口封裝 192
6.4.2 模型訓練 198
6.4.3 模型測試 204
6.4.4 小結 208
參考文獻 208
第7章 人臉屬性識別 211
7.1 人臉性別識別 211
7.1.1 人臉性別識別方法 211
7.1.2 人臉性別識別發展與挑戰 212
7.2 人臉顏值與臉型識別 212
7.2.1 平均臉和臉型分類 212
7.2.2 人臉顏值與臉型特徵 213
7.2.3 套用和挑戰 214
7.3 人臉年齡識別 214
7.3.1 人臉年齡估計模型 215
7.3.2 傳統年齡估計方法 216
7.3.3 深度學習年齡估計方法 216
7.3.4 小結 218
7.4 人臉表情識別 218
7.4.1 概述 218
7.4.2 傳統表情識別算法 219
7.4.3 深度學習方法 221
7.4.4 挑戰與展望 222
7.5 人臉屬性識別項目實踐 223
7.5.1 表情識別 223
7.5.2 年齡識別 229
7.5.3 總結 233
參考文獻 234
第8章 人臉屬性分割 236
8.1 圖像分割的基礎與人臉屬性分割的套用 236
8.1.1 圖像分割的含義 236
8.1.2 經典的圖像分割方法 236
8.1.3 人臉屬性分割的套用 238
8.2 深度學習圖像分割核心技術 239
8.2.1 反卷積 239
8.2.2 圖像分割經典模型 241
8.2.3 感受野控制、上下文信息與多尺度結構 243
8.2.4 圖像分割後處理技術 246
8.2.5 圖像分割中的難題 247
8.3 輕量級人臉分割項目實踐 248
8.3.1 數據集與基準模型 249
8.3.2 模型訓練與測試 250
8.3.3 小結 254
參考文獻 255
第9章 人臉美顏與美妝 257
9.1 美顏基礎和套用場景 257
9.1.1 五官重塑 257
9.1.2 磨皮、美白與膚質調整 258
9.1.3 上妝 258
9.2 基於濾波與變形的傳統美顏算法 259
9.2.1 基於變形的五官重塑 259
9.2.2 基於濾波的磨皮算法 261
9.2.3 基於膚色模型的美白與膚質調整算法 263
9.2.4 小結 264
9.3 妝造遷移算法 264
9.3.1 傳統妝造遷移算法 264
9.3.2 深度學習算法 266
9.4 妝造遷移算法實戰 270
9.4.1 項目解讀 270
9.4.2 模型訓練 282
9.4.3 模型測試 284
參考文獻 286
第10章 人臉三維重建 287
10.1 三維重建基礎 287
10.1.1 常見三維重建技術 287
10.1.2 人臉三維重建的特點和難點 288
10.1.3 人臉三維重建基礎技術 289
10.2 傳統三維人臉重建技術 290
10.2.1 多目立體視覺匹配 290
10.2.2 3DMM 294
10.2.3 Shape from Shading 297
10.2.4 Structure from Motion 298
10.3 深度學習三維人臉重建 298
10.3.1 基於3DMM的方法 298
10.3.2 基於端到端的通用模型 300
10.3.3 三維人臉重建的難點 301
10.4 深度學習三維人臉重建實踐 302
10.4.1 BFM模型的使用 302
10.4.2 基於BFM模型的常見三維特徵 315
10.4.3 PRNet三維重建 318
10.4.4 小結 324
參考文獻 325
第11章 人臉屬性編輯 327
11.1 人臉屬性編輯基礎 327
11.1.1 人臉屬性編輯套用 327
11.1.2 基於模型的人臉編輯 329
11.2 深度學習人臉屬性編輯方法 329
11.2.1 GAN基礎 330
11.2.2 圖像風格化 334
11.2.3 表情編輯算法 336
11.2.4 年齡編輯算法 338
11.2.5 姿態編輯算法 339
11.2.6 人臉風格化算法 341
11.2.7 換臉算法 344
11.2.8 統一的人臉屬性編輯框架 345
11.2.9 小結 347
11.3 實戰人臉動畫頭像風格化 347
11.3.1 項目解讀 348
11.3.2 模型訓練 358
11.3.3 模型測試 358
參考文獻 361
出版背景
深度學習在產業界的崛起始於ImageNet。中國在人臉圖像套用領域也走在了世界前沿,屢屢斬獲全球大賽冠軍獎項。但是業界還是缺乏系統地講解人臉圖像核心算法理論和實踐的書籍。言有三在深度學習領域深耕多年,積累了豐富的人臉圖像處理項目經驗,本書詳細地介紹了人臉圖像在各種套用場景中所需要的核心技術,豐富和充實了基於深度學習的人臉圖像處理類圖書市場。
作者簡介
言有三 真名龍鵬。2012年本科畢業於華中科技大學,後保研至中國科學院並於2015年畢業。先後在奇虎360人工智慧研究院和陌陌深度學習實驗室從事計算機視覺相關工作,積累了豐富的傳統圖像處理算法研究心得和深度學習項目實戰經驗。出版了《深度學習之圖像識別:核心技術與案例實戰》與《深度學習之模型設計:核心算法與案例實踐》等著作。