正交因子模型(orthogonal factor model)是一種特殊的公共因子模型。正交因子模型的基本假設是:各個公共因子間相互獨立;各個特殊因子間相互獨立;各個公共因子與各個特殊因子間相互獨立。
基本介紹
- 中文名:正交因子模型
- 外文名:orthogonal factor model
- 所屬學科:數學
- 所屬問題:統計學(實驗設計)
- 簡介:一種特殊的公共因子模型
數學模型,正交因子模型的性質,
數學模型
![](/img/4/e8d/wZ2NnL1IWY2UDMjRjYzEzY3Q2MmZ2MjFDZ2YDOlFmZmFmMklzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
其中
為公共因子,
為特殊因子,它們都是不可觀測的隨機變數。公共因子
出現在每一個原始變數
的表達式中,可理解為原始變數共同具有的公共因素;每個公共因子
一般至少對兩個原始變數有作用,否則可考慮將它歸人特殊因子。每個特殊因子
僅僅出現在與之相應的第i個原始變數
的表達式中,它只對這個原始變數有作用。(1)式可用矩陣、向量表示為
![](/img/8/fa1/wZ2NnLzEmZ1QmY3kzN5YGOzM2M1IWNyUjMjVjY3gTMihjMlhzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/0f9/wZ2NnLwcDNhlDMiVjZxETO1I2Y1cTOmRTZ5ImN2I2NlJjYzQ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/fa1/wZ2NnLzEmZ1QmY3kzN5YGOzM2M1IWNyUjMjVjY3gTMihjMlhzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/4/97f/wZ2NnLyImZ2MjN2EmMkRzYkZmZxETZ3IDM0QGO2YmZjJWZmZzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/2e3/wZ2NnLwcjM2IjM2M2MxQGN0kTZmhTNhVzNxUjM5YGZlVGMkFzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/65f/wZ2NnL0MmNklTY3UzMkNTOmRzY1cDNkNDOwUjYwUjZxIDN0UzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/a7a/wZ2NnL1gDNjNTNmhTYiFTYwEmNyIWOyYWNlZmNwATZ0gTY5Y2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/c/28c/wZ2NnL0UjYycjZlhTZxAjM1MDMyQWY4QTYwIGOxADZ3kTZ1Q2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/014/wZ2NnLmJmY4ATYzcDMhZGZ5UTYkVTYmFjMkNDNwkjM3AzNxMzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/c05/wZ2NnL0UmNjljYzMzY4cDO5MGM4QjYyEmY3EjM2QWNzIDM0YzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/940/wZ2NnLyMGZ0MTMzYjYwYDO2cjM4YjMyUTMmFGNxIjYmVmM5czLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/dce/wZ2NnL3IDNwEzY5QGMmJjMhJmZlZTO0UDNkVmYxQWMxYzMyYzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
正交因子模型的性質
1.
的協方差矩陣
的分解
![](/img/1/2d4/wZ2NnL5czNmVGZ5QGZiBTYlRWMhNmYzkTMzIWOzEmMzU2MhJ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/af2/wZ2NnLhhTM3ImZyUzMzAjMmdzM5E2YxcTYhVGNhR2M4QzYwI2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
由(2)、(3)知
![](/img/4/48b/wZ2NnL1gDO0EjYjRDNmBjN2YTY1MjZhFTZwgzN1QjM0EmZ3gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
這就是
的一個分解。如果A只有少數幾列,則上述分解式揭示了
的一個簡單結構。由
![](/img/7/af2/wZ2NnLhhTM3ImZyUzMzAjMmdzM5E2YxcTYhVGNhR2M4QzYwI2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/af2/wZ2NnLhhTM3ImZyUzMzAjMmdzM5E2YxcTYhVGNhR2M4QzYwI2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
於D是對角矩陣,故
的非對角線元素可由A的元素確定,即因子載荷完全決定了原始變數
![](/img/7/af2/wZ2NnLhhTM3ImZyUzMzAjMmdzM5E2YxcTYhVGNhR2M4QzYwI2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
之間的協方差。如果
為各分量已標準化了的隨機向量,則
就是相關矩陣R,即有
![](/img/1/2d4/wZ2NnL5czNmVGZ5QGZiBTYlRWMhNmYzkTMzIWOzEmMzU2MhJ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/af2/wZ2NnLhhTM3ImZyUzMzAjMmdzM5E2YxcTYhVGNhR2M4QzYwI2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/ea1/wZ2NnLzE2N3UmYzU2NxYWO3ATOiJmNmZTNilTOiFzMyIWNllzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
分解式(4)是在
滿足正交因子模型的假定下推導出的,而對一般未作此假定的
,(4)式是不容易準確得到的。當m=p時,任何協方差矩陣
均可按(4)式進行分解,如可取
,但此時的分解對因子分析來說是毫無意義的,因為進行因子分析的目的就是要降維。在因子分析的大多數套用中,出於降維的需要,我們希望m要比p小得多,通常只能使這種分解近似成立,近似程度越好,表明因子模型擬合得越佳。
![](/img/1/2d4/wZ2NnL5czNmVGZ5QGZiBTYlRWMhNmYzkTMzIWOzEmMzU2MhJ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/2d4/wZ2NnL5czNmVGZ5QGZiBTYlRWMhNmYzkTMzIWOzEmMzU2MhJ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/af2/wZ2NnLhhTM3ImZyUzMzAjMmdzM5E2YxcTYhVGNhR2M4QzYwI2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/c/4dc/wZ2NnLiFDNyQzNxIWY0EGMjNjNkFDZzAzYhNWYiNTOyEDN2E2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
2.模型不受單位的影響
將
的單位作變化,通常是作一變換
,這裡C=diag(
),
,於是
![](/img/1/2d4/wZ2NnL5czNmVGZ5QGZiBTYlRWMhNmYzkTMzIWOzEmMzU2MhJ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/2/68e/wZ2NnLxUWZ0kDZ2YWNzIDNmljZmJGZyQmN1UGO4MDNyI2NiVzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/2/2c5/wZ2NnLhRWOwEWY5ETOyIzNwITM4YzMjVzN3IDO0MWYjJWN2gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/e2b/wZ2NnLhhTNiBTYwQ2Y5IWM3YmYiNTM5AjY5ATZ2QjN3AjNmZzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/6a7/wZ2NnLmhjN2IGZlhzMkdTOmhjNmJTNilTYxEmY0EmZzczMhJ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/aa3/wZ2NnL1QTNwUmNjRTN3UGM5gzN2gDMzgTN3kzYhlDZ2kTNxEzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/1cf/wZ2NnL0UmZ0UjNygjYhZmZkJTY0YTZjJDOwETO3cDZ1U2MjF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/4/2e7/wZ2NnL0UmN3cjMzATY2EGO4UWYlVWY3cDN0QWO5UDNkBjMldzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/c/400/wZ2NnLmFWZ0MWZxY2YjR2NjlTOjJmYldDMlZWZhR2NmNWM1QzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
3.因子載荷是不唯一的
設T為任一m×m正交矩陣,令
,則模型(2)能表示為
![](/img/d/3e9/wZ2NnLlNDM5ImYjJWY5IDZ3U2N3YjMyEmYxADNhVWO3UmZ3Q2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/79f/wZ2NnLmJWZ2MmYlhDN2UDM1UWM2cjY5ADOlJGMihjYwUjMhVzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/9/180/wZ2NnL5QGN1cTZ5ITYzI2NmVTZyIGZlJWZmNGN4czMjNTOzE2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/2/46d/wZ2NnL5YzN1UzNwkDNkBDZwYDN4EDNhNDMmlzNihjMyUTMiV2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/2/a6f/wZ2NnL0EGO4ETZ2cjMmJzNjRmZlljMyITNwU2NjJGO2kTN4Y2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)