權值共享

權值共享

權值共享就是說,給一張輸入圖片,用一個卷積核去掃這張圖,卷積核裡面的數就叫權重,這張圖每個位置是被同樣的卷積核掃的,所以權重是一樣的,也就是共享。

基本介紹

  • 中文名:權值共享
  • 外文名:Weight sharing
簡介,舉例,

簡介

權值共享意味著每一個過濾器在遍歷整個圖像的時候,過濾器的參數(即過濾器的參數的值)是固定不變的,比如我有3個特徵過濾器,每個過濾器都會掃描整個圖像,在掃描的過程中,過濾器的參數值是固定不變的,即整個圖像的所有元素都“共享”了相同的權值。
另外,換個角度理解為什麼權值要固定,比如我有個曲線的特徵過濾器,那么這個過濾器在掃描全圖的時候,我們想要提取出所有的曲線區域,是不是這個過濾器不能變?如果在上半部分過濾器是曲線,到下半部分變成了直線,那么在圖像上下區域內提取出來的曲線特徵是真正的曲線嗎?個人認為從這個直白的角度更容易理解。

舉例

對於一張輸入圖片,大小為
,如果使用全連線網路,生成一張
的feature map,需要
個參數,如果原圖長寬是10^2級別的,而且
大小和
差不多的話,那么這樣一層網路需要的參數個數是10~10級別。這么多參數肯定是不行的,那么我們就想辦法減少參數的個數對於輸出層feature map上的每一個像素,他與原圖片的每一個像素都有連線,每一個連結都需要一個參數。但注意到圖像一般都是局部相關的,那么如果輸出層的每一個像素只和輸入層圖片的一個局部相連,那么需要參數的個數就會大大減少。假設輸出層每個像素只與輸入圖片上
的一個小方塊有連線,也就是說輸出層的這個像素值,只是通過原圖的這個
的小方形中的像素值計算而來,那么對於輸出層的每個像素,需要的參數個數就從原來的
減小到了
。如果對於原圖片的每一個
的方框都需要計算這樣一個輸出值,那么需要的參數只是
,如果原圖長寬是10級別,而F在10以內的話,那么需要的參數的個數只有10~10級別,相比於原來的10~10小了很多很多。
這還不夠。圖片還有另外一個特性:圖片的底層特徵是與特徵在圖片中的位置無關的。比如說邊緣,無論是在圖片中間的邊緣特徵,還是在圖片邊角處的邊緣特徵,都可以用過類似於微分的特稱提取器提取。那么對於主要用於提取底層特稱的前幾層網路,把上述局部全連線層中每一個
方形對應的權值共享,就可以進一步減少網路中參數的個數。也就是說,輸出層的每一個像素,是由輸入層對應位置的
的局部圖片,與相同的一組
的參數(或稱權值)做內積,再經過非線性單元計算而來的。這樣的話無論圖片原大小如何,只用F*F個參數就夠了,也就是幾個幾十個的樣子。當然一組
的參數只能得到一張特徵圖,一般會有多組參數,分別經過卷積後就可以有好幾層特徵圖。順帶一提,高級特徵一般是與位置有關的,比如一張人臉圖片,眼睛和嘴位置不同,那么處理到高層,不同位置就需要用不同的神經網路權重,這時候卷積層就不能勝任了,就需要用局部全連線層和全連線層。
圖一示意了局部連線,每一個W只與輸入的一部分連線,如果W1和W2是相同的,那么就是卷積層,這時參數W和W相同,因此說共享。
權值共享
圖一

相關詞條

熱門詞條

聯絡我們