機械系統RBF神經網路控制:設計、分析及MATLAB仿真

機械系統RBF神經網路控制:設計、分析及MATLAB仿真
作者:劉金琨
圖書詳細信息:
ISBN:9787302302551
定價:99元
印次:1-1
裝幀:精裝
印刷日期:2013-3-7
Contents
Chapter 1 Introduction..................................................................................... 1
1.1 Neural Network Control ......................................................................... 1
1.1.1 Why Neural Network Control?................................................... 1
1.1.2 Review of Neural Network Control............................................ 2
1.1.3 Review of RBF Adaptive Control .............................................. 3
1.2 Review of RBF Neural Network ............................................................ 3
1.3 RBF Adaptive Control for Robot Manipulators ..................................... 4
1.4 S Function Design for Control System...................................................5
1.4.1 S Function Introduction..............................................................5
1.4.2 Basic Parameters in S Function..................................................5
1.4.3 Examples .................................................................................... 5
1.5 An Example of a Simple Adaptive Control System ............................... 7
1.5.1 System Description..................................................................... 7
1.5.2 Adaptive Control Law Design....................................................7
1.5.3 Simulation Example ................................................................... 9
References ..................................................................................................... 11
Appendix ....................................................................................................... 14
Chapter 2 RBF Neural Network Design and Simulation.................................. 19
2.1 RBF Neural Network Design and Simulation ...................................... 19
2.1.1 RBF Algorithm ......................................................................... 19
2.1.2 RBF Design Example with Matlab Simulation ........................ 20
2.2RBF Neural Network Approximation Based on Gradient Descent Method .................................................................................... 22
2.2.1 RBF Neural Network Approximation....................................... 22
2.2.2 Simulation Example ................................................................. 24
2.3 Effect of Gaussian Function Parameters on RBF Approximation ........ 26
2.4 Effect of Hidden Nets Number on RBF Approximation ...................... 29
2.5 RBF Neural Network Training for System Modeling........................... 32
2.5.1 RBF Neural Network Training ................................................. 32
2.5.2 Simulation Example ................................................................. 33
2.6 RBF Neural Network Approximation................................................... 36
References ..................................................................................................... 36
Appendix ....................................................................................................... 37
Chapter 3 RBF Neural Network Control Based on Gradient Descent Algorithm....................................................................... 55
3.1Supervisory Control Based on RBF Neural Network........................... 55
3.1.1 RBF Supervisory Control ......................................................... 55
3.1.2 Simulation Example ................................................................. 56
3.2RBFNN Based Model Reference Adaptive Control ............................. 58
3.2.1 Controller Design ..................................................................... 58
3.2.2 Simulation Example ................................................................. 59
3.3RBF Self-Adjust Control ...................................................................... 60
3.3.1 System Description................................................................... 60
3.3.2 RBF Controller Design............................................................. 61
3.3.3 Simulation Example ................................................................. 62
References ..................................................................................................... 64
Appendix ....................................................................................................... 64
Chapter 4 Adaptive RBF Neural Network Control........................................ 71
4.1Adaptive Control Based on Neural Approximation.............................. 71
4.1.1 Problem Description.................................................................71
4.1.2 Adaptive RBF Controller Design ............................................. 72
4.1.3 Simulation Examples................................................................ 75
4.2Adaptive Control Based on Neural Approximation with Unknown Parameter ............................................................................. 78
4.2.1 Problem Description.................................................................78
4.2.2 Adaptive Controller Design...................................................... 79
4.2.3 Simulation Examples................................................................ 82
4.3A Direct Method for Robust Adaptive Control by RBF ....................... 84
4.3.1 System Description................................................................... 84
4.3.2 Desired Feedback Control and Function Approximation ......... 85
4.3.3 Controller Design and Performance Analysis........................... 86
4.3.4 Simulation Example ................................................................. 89
References ..................................................................................................... 92
Appendix ....................................................................................................... 92
Chapter 5 Neural Network Sliding Mode Control ....................................... 111
5.1Typical Sliding Mode Controller Design............................................ 111
5.2Sliding Mode Control Based on RBF for Second-Order SISO Nonlinear System...................................................................... 113
5.2.1 Problem Description............................................................... 113
5.2.2 Sliding Mode Control Based on RBF for Unknown f(). ...... 114
5.2.3 Simulation Example ............................................................... 115
5.3Sliding Mode Control Based on RBF for Unknown f(). and g(). ..... 117
5.3.1 Introduction ............................................................................ 117
5.3.2 Simulation Example ............................................................... 119
References ................................................................................................... 121
Appendix ..................................................................................................... 121
Chapter 6 Adaptive RBF Control Based on Global Approximation ........ 131
6.1Adaptive Control with RBF Neural Network Compensation for Robotic Manipulators....................................................................131
6.1.1Problem Description...............................................................132
6.1.2RBF Approximation ............................................................... 133
6.1.3RBF Controller and Adaptive Law Design and Analysis ....... 133
6.1.4Simulation Examples.............................................................. 138
6.2RBF Neural Robot Controller Design with Sliding Mode Robust Term........................................................................................ 143
6.2.1Problem Description...............................................................143
6.2.2RBF Approximation ............................................................... 144
6.2.3Control Law Design and Stability Analysis............................ 144
6.2.4Simulation Examples.............................................................. 146
6.3Robust Control Based on RBF Neural Network with HJI..................150
6.3.1Foundation.............................................................................. 150
6.3.2Controller Design and Analysis..............................................150
6.3.3 Simulation Examples.............................................................. 153
References ................................................................................................... 156
Appendix ..................................................................................................... 157
Chapter 7 Adaptive Robust RBF Control Based on Local Approximation................................................................................. 187
7.1Robust Control Based on Nominal Model for Robotic Manipulators ......................................................................... 187
7.1.1Problem Description...............................................................187
7.1.2Controller Design ................................................................... 188
7.1.3Stability Analysis....................................................................189
7.1.4Simulation Example ............................................................... 190
7.2Adaptive RBF Control Based on Local Model Approximation for Robotic Manipulators ......................................................................... 192
7.2.1Problem Description...............................................................192
7.2.2Controller Design ................................................................... 193
7.2.3Stability Analysis....................................................................194
7.2.4Simulation Examples.............................................................. 196
7.3Adaptive Neural Network Control of Robot Manipulators in Task Space .......................................................................................... 201
7.3.1Coordination Transformation from Task Space to Joint Space ............................................................................. 201
7.3.2Neural Network Modeling of Robot Manipulators ................ 202
7.3.3Controller Design ................................................................... 204
7.3.4 Simulation Examples.............................................................. 206
References ................................................................................................... 210
Appendix ..................................................................................................... 210
Chapter 8 Backstepping Control with RBF.................................................. 243
8.1Introduction ........................................................................................ 243
8.2Backstepping Control for Inverted Pendulum .................................... 244
8.2.1System Description................................................................. 245
8.2.2Controller Design ................................................................... 245
8.2.3Simulation Example ............................................................... 246
8.3Backstepping Control Based on RBF for Inverted Pendulum............247
8.3.1System Description................................................................. 247
8.3.2Backstepping Controller Design............................................. 248
8.3.3Adaptive Law Design ............................................................. 249
8.3.4Simulation Example ............................................................... 251
8.4Backstepping Control for Single Link Flexible Joint Robot .............. 253
8.4.1System Description................................................................. 253
8.4.2Backstepping Controller Design............................................. 253
8.5Adaptive Backstepping Control with RBF for Single Link Flexible Joint Robot............................................................................ 256
8.5.1Backstepping Controller Design with Function Estimation ..... 257
8.5.2Backstepping Controller Design with RBF Approximation ..... 260
8.5.3 Simulation Examples.............................................................. 262
References ................................................................................................... 266
Appendix ..................................................................................................... 267
Chapter 9 Digital RBF Neural Network Control ......................................... 283
9.1Adaptive Runge-Kutta-Merson Method ............................................. 283
9.1.1Introduction ............................................................................ 283
9.1.2Simulation Example ............................................................... 285
9.2Digital Adaptive Control for SISO System......................................... 286
9.2.1Introduction ............................................................................ 286
9.2.2Simulation Example ............................................................... 286
9.3Digital Adaptive RBF Control for Two Link Manipulators.................... 288
9.3.1Introduction ............................................................................ 288
9.3.2 Simulation Example ............................................................... 289
References ................................................................................................... 290
Appendix ..................................................................................................... 291
Chapter 10 Discrete Neural Network Control.............................................. 299
10.1Introduction ...................................................................................... 299
10.2Direct RBF Control for a Class of Discrete-time Nonlinear System ............................................................................. 300
10.2.1 System Description ............................................................. 300
10.2.2 Controller Design and Stability Analysis............................300
10.2.3 Simulation Examples .......................................................... 304
10.3Adaptive RBF Control for a Class of Discrete-Time Nonlinear System ............................................................................. 307
10.3.1 System Description ............................................................. 307
10.3.2 Traditional Controller Design ............................................. 308
10.3.3 Adaptive Neural Network Controller Design ..................... 308
10.3.4 Stability Analysis ................................................................ 310
10.3.5 Simulation Examples .......................................................... 312
References ................................................................................................... 317
Appendix ..................................................................................................... 318
Chapter 11 Adaptive RBF Observer Design and Sliding Mode Control..... 327
11.1Adaptive RBF observer design ......................................................... 327
11.1.1 System Description ............................................................. 327
11.1.2 Adaptive RBF Observer Design and Analysis .................... 328
11.1.3 Simulation Examples .......................................................... 330
11.2Sliding Mode Control Based on RBF Adaptive Observer ................ 335
11.2.1 Sliding Mode Controller Design ......................................... 335
11.2.2 Simulation Example............................................................336
References ................................................................................................... 339
Appendix ..................................................................................................... 339
Index.................................................................................................................. 351

相關詞條

熱門詞條

聯絡我們