楊曉燕(西北師範大學講師)

楊曉燕,女,漢族,1980年2月出生。2009年在西北師範大學獲得博士學位,同年留校任教。現為西北師範大學數學與統計學教授、博士生導師、兼任美國《Math Review》評論員。主要研究方向是環的同調理論。

基本介紹

  • 中文名:楊曉燕
  • 民族:漢族
  • 出生日期:1980年
  • 畢業院校:西北師範大學
  • 學位/學歷:博士
  • 專業方向:環的同調理論
  • 職務:西北師範大學博士生導師
教研成果,科研論文,項目,獲獎,

教研成果

入選2013年度教育部“新世紀優秀人才支持計畫”;主持完成青年科學基金項目1項;正承擔地區科學基金項目1項;主持完成中國博士後科學基金項目1項;參與國家自然科學基金項目2項(排名分別為第三、第二);主持西北師範大學三期 “知識與科技創新”科研骨幹培育項目一項。作為牽頭人,榮獲甘肅省高校科技進步二等獎2次,一等獎1次; 作為第一參與人, 榮獲甘肅省自然科學三等獎1次。

科研論文

[1]Yang Xiaoyan and Liu Zhongkui, Strongly Gorenstein projective, injective and flat modules, Journal of Algebra, 320 (2008) 2659–2674.
[2]Liu Zhongkui and Yang Xiaoyan, Left APP-property of formal power series rings, Archivum Mathematicum (Brno), 44 (2008) 185-189.
[3]Yang Xiaoyan and Liu Zhongkui, Gorenstein projective, injective and flat modules, J. Aust. Math. Soc., 87 (2009) 395-407.
[4]Yang Xiaoyan and Liu Zhongkui, FP-injective complexes, Comm. Algebra, 38 (2010) 131-142.
[5]Liu Zhongkui and Yang Xiaoyan, On annihilator ideals of skew monoid rings, Glasgow Math. J., 52 (2010) 161-168.
[6]Yang Xiaoyan and Liu Zhongkui, C-Gorenstein projective, injective and flat modules, Czechoslovak Math. J., 60 (2010) 1109-1129.
[7]Yang Xiaoyan and Liu Zhongkui, D-Gorenstein projective, injective and flat modules, Algebra Colloq., 18 (2011) 273-288.
[8]Yang Xiaoyan and Liu Zhongkui, n-flat and n-FP injective modules, Czechoslovak Math. J., 61 (2011) 359-369.
[9]Yang Xiaoyan and Liu Zhongkui, Gorenstein projective, injective and flat complexes, Comm. Algebra 39 (2011) 1705-1721.
[10]Di Zhenxing and Yang Xiaoyan, Transfer properties of Gorenstein homological dimension with respect to a semidualizing module,J. Korean Math. Soc. 49 (2012)1197-1214.
[11]Yang Xiaoyan and Liu zhongkui, V-Gorenstein projective, injective and flat modules, Rocky Mt. J. Math., 42 (2012) 2075-2098.
[12]Yang Xiaoyan and Liu ZHongkui, DG-projective, injective and flat complexes, Algebra Colloq. 20 (2013) 155-162.
[13]Yang Xiaoyan and Zhao Jianlian, Gorenstein flat and cotorsion dimensions of unbounded complexes, Comm. Algebra 41 (2013) 2978-2990.
[14]Yang Xiaoyan, Notes on proper class of triangles, Acta Mathematica Sinica, English Series 29 (2013) 2137-2154.
[15]Yang Xiaoyan, Covers and preenvelopes by V-Gorenstein flat modules, Turk. J. Math., 38 (2014) 819-832.
[16]Yang Xiaoyan and Ding Nanqing, The homotopy category and derived category of N-complexes, J. Algebra 426 (2015) 430–476.
[17]Yang Xiaoyan, Model structures on triangulated categories, Glasgow Math. J. 57 (2015) 263–284.
[18]Yang Xiaoyan and Liu Zhongkui, On nonnil-noetherian rings, Southeast Asian Bull. Math., 33 (2009) 1215-1223.
[19]Liu Zhongkui and Yang Xiaoyan, Triangular matrix representations of skew monoid rings, Math. J. Okayama Univ., 52 (2010) 97-109.
[20]Yang Xiaoyan and Liu Zhongkui, FP-gr-injective modules, Math. J. Okayama Univ., 53 (2011) 83-100.
[21]Yang Xiaoyan, Gorenstein homological dimensions and change of rings, Journal of Mathematical Research with Applications, 32 (2012) 571-581.
[22]Yang Xiaoyan, Covers and preenvelopes by V-Gorenstein flat modules, Turk. J. Math. 38 (2014) 819-832.
[23]Yang Xiaoyan, n-strongly Gorenstein projective and injective and flat modules, Chin. Quart. J. Math. 29 (2014) 553-564.
[24]Yang Xiaoyan and Ding Nanqing, The homotopy category and derived category of N-complexes, J. Algebra 426 (2015) 430–476.
[25]Yang Xiaoyan, Model structures on triangulated categories, Glasgow Math. J. 57 (2015) 263–284.
[26]Yang Xiaoyan and Wang Junpeng, The existence of homotopy resolutions of N-complexes, Homology, Homotopy Appl. 17 (2015) 291–316.
[27]Yang Xiaoyan and Ding Nanqing, On a question of Gillespie, Forum Math. 27 (2015) 3205–3231.
[28]Yang Xiaoyan, Gorenstein categories G(X ,Y ,Z ) and dimensions, Rocky Mt. J. Math. 45 (2015) 2043-2064.
[29]Yang Xiaoyan, W-resolutions and Gorenstein categories with respect to a semidualizing, J. Korean Math. Soc. 53 (2016) 1-17.
[30]Liu Yanping, Liu Zhongkui and Yang Xiaoyan, Depth for triangulated categories, Bull. Korean Math. Soc. 53 (2016) 551–559.

項目

[1]楊曉燕、吳德軍、王欣欣,西北師範大學三期“知識與科技創新工程”科研骨幹培育項目,批准號:NWNU-KJCXGC-03-68,2010.01—2011.12。
[2]楊曉燕、喬虎生、吳德軍,Hopf代數上的Gorenstein同調性質,青年科學基金項目,批准號:11001222,2011.01—2013.12。
[3]劉仲奎、趙仁育、楊曉燕、王占平、張文匯、張春霞,復形範疇中的Gorenstein同調維數,國家自然科學基金項目,批准號:10961021, 2010.01—2012.12。
[4]楊曉燕、劉仲奎、趙仁育、張翠萍,同倫範疇的recollement、余(t)-結構和同調維數理論, 國家自然科學基金項目,批准號:10361051,2014.01—2017.12。
[5]楊曉燕,Grothendieck範疇中復形的同調維數,中國博士後科學基金項目,批准號:BK201106,8 2011.09—2014.02。
[6]楊曉燕,新世紀優秀人才支持計畫, 教育部,批准號:NCET-13-0957,2014.01—2016.12。
[7]國家自然科學基金項目:廣義冪級數環理論研究,起止年月:2014.1—2017.12 (參與)。

獲獎

[1]楊曉燕、劉仲奎、張文匯、張春霞、王占平,模範疇和復形範疇中的Gorenstein同調性質,甘肅省高校科技進步二等獎,2010年。
[2]楊曉燕、吳德軍、劉仲奎、趙仁育、楊剛、王占平, Gorenstein同調復形及余撓理論, 甘肅省科技廳,甘肅省高校科技進步獎,二等獎,2012。
[3]劉仲奎、楊曉燕、趙仁育、喬虎生、張春霞,復形的相對同調代數,甘肅省科技廳,甘肅省自然科學獎,三等獎,2013。
[4]楊曉燕、趙仁育、王占平、喬虎生、任偉,復形的 Gorenstein同調維數及Ding導出範疇, 甘肅省科技廳,甘肅省高校科技進步獎,一等獎,2014。

相關詞條

熱門詞條

聯絡我們