條件方程是根據各觀測元素間的幾何、物理條件或附加條件和約束條件建立的方程式。
基本介紹
- 中文名:條件方程
- 外文名:conditionequation
- 定義:根據物理條件建立的方程式
- 套用學科:數理學
條件方程是根據各觀測元素間的幾何、物理條件或附加條件和約束條件建立的方程式。
條件方程是根據各觀測元素間的幾何、物理條件或附加條件和約束條件建立的方程式。...... 條件方程是根據各觀測元素間的幾何、物理條件或附加條件和約束條件建立的方程式...
限制條件方程(constraint equation)亦稱約束條件方程.平差函式模型中的基本方程之一它是描述未知數(或稱參數)之間存在的函式關係式.在平差計算中,除了觀測量之外,...
方程(equation)是指含有未知數的等式。是表示兩個數學式(如兩個數、函式、量、運算)之間相等關係的一種等式,使等式成立的未知數的值稱為“解”或“根”。求...
條件平差時,根據各觀測元素間存在的幾何、物理條件,由多餘數據形成的附合條件和參數約束條件所建立方程式的總稱。 ...
共線方程是表達物點、像點和投影中心(對像片而言通常是鏡頭中心)三點位於一條直線的數學關係式,是攝影測量學中最基本的公式之一。...
如果一個等式,在所討論的範圍里不是對字母的所有允許值都成立,而是僅當字母滿足某些條件時才能使等式成立,這樣的等式叫做條件等式。例如:當x=3時,4x=12;當a=5...
數值分析中,一個問題的條件數是該數量在數值計算中的容易程度的衡量,也就是該問題的適定性。一個低條件數的問題稱為良置的,而高條件數的問題稱為病態(或者說...
邊界條件,是指在求解區域邊界上所求解的變數或其導數隨時間和地點的變化規律。邊界條件是控制方程有確定解的前提,對於任何問題,都需要給定邊界條件。邊界條件的處理,...
條件平差的前提是有多餘觀測量, 條件方程式的個數與多餘觀測量有關,每有一個多餘觀測量,就可列出一個獨立的條件方程式,在進行條件平差時,應列出與多餘觀測數...
能斯特方程,是指用以定量描述某種離子在A、B兩體系間形成的擴散電位的方程表達式。在電化學中,能斯特方程用來計算電極上相對於標準電勢而言的指定氧化還原對的平衡...
納維-斯托克斯方程(英文名:Navier-Stokes equations),描述粘性不可壓縮流體動量守恆的運動方程。簡稱N-S方程。粘性流體的運動方程首先由Navier在1827年提出,只考慮了...
貝爾曼方程(Bellman Equation)也被稱作動態規劃方程(Dynamic Programming Equation),由理查·貝爾曼(Richard Bellman)發現。貝爾曼方程是動態規劃(Dynamic Programming)這些...
米氏方程(Michaelis-Menten equation)表示一個酶促反應的起始速度與底物濃度關係的速度方程。在酶促反應中,在低濃度底物情況下,反應相對於底物是一級反應(first ...
圓的標準方程(x-a)²+(y-b)²=r²中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個...
Langmuir方程是常用的吸附等溫線方程之一,是由物理化學家朗格繆爾(Langmuir Itying)於1916年根據分子運動理論和一些假定提出的。現廣泛套用於吸附學方面。...
納維一斯托克斯方程(Navier-Stokes equation)簡稱NS方程,流體力學的基本方程之一,指描述粘性流體動量守恆的運動方程。...
薛丁格方程是量子力學最基本的方程,亦是量子力學的一個基本假定,它的正確性只能靠實驗來檢驗。薛丁格方程是量子力學的基本方程,它揭示了微觀物理世界物質運動的基本...
函式方程是含有未知函式的方程。函式方程可以有一個解,可以無解,也可以有多個解,甚至可以有無窮多個解。能使函式方程成立的函式叫做函式方程的解,求函式方程的解...
Avrami方程是由詹森—梅爾(Johnson-Mehl)導出的方程。...... 結晶動力學方程首先由詹森—梅爾(Johnson-Mehl)導出。方程推導的假設條件為:均勻形核,形核率和長大...
波動方程或稱波方程(英語:wave equations) 由麥克斯韋方程組導出的、描述電磁場波動特徵的一組微分方程,是一種重要的偏微分方程,主要描述自然界中的各種的波動現象,...