基本介紹
- 中文名:格蘭迪級數
- 外文名:Grandi's series
- 表達式:1 − 1 + 1 − 1 + …
- 提出者:格蘭迪
簡介,總結,
簡介
針對以下的格蘭迪級數
1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + …
一種求和方式是求它的裂項和:
(1 − 1) + (1 − 1) + (1 − 1) + … = 0 + 0 + 0 + … = 0.
但若調整括弧的位置,會得到不同的結果:
1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + … = 1 + 0 + 0 + 0 + … = 1.
用不同的方式為格蘭迪級數加上括弧進行求和,其級數和可以得到0或是1的值。
格蘭迪級數為發散幾何級數,若將收斂幾何級數求和的方式用在格蘭迪級數,可以得到第三個數值:
S = 1 − 1 + 1 − 1 + …,因此
1 − S = 1 − (1 − 1 + 1 − 1 + …) = 1 − 1 + 1 − 1 + … = S,即
2S = 1,
可得到S = 1/2。
依照上述的計算,可以得到以下的二種結論:
格蘭迪級數 1 − 1 + 1 − 1 + … 的和不存在。
格蘭迪級數的和為1/2。
總結
上述二個答案都可以精確的證明,但需要用19世紀提出的一些良好定義的數學概念。從17世紀歐洲開始使用微積分起,一直到現在嚴謹的數學成型之前,上述二個答案已造成數學家們尖銳及無止盡的爭論。