析因試驗(析因實驗)

析因試驗

析因實驗一般指本詞條

析因試驗是考察某些條件(因子)對目標變數影響的試驗或實驗。設X是需通過試驗考察的經濟量或物理量——目標變數。在影響X的條件下,有可以控制的因素,還有大量無法控制的隨機因素。所要考察的影響目標變數且可以控制的條件,稱做因子或因素;因子的狀態、等級或數值,稱做因子水平。析因試驗,把各因子分別控制在若干不同水平上,而使其餘可以控制的條件保持不變,並對各種不同的因子水平組合(配方)分別進行試驗。只有一個因子的析因試驗,稱做單因子試驗;有兩個或兩個以上因子的試驗,稱做“多因子試驗”。考察r個因子每個因子各取m個水平的析因試驗,簡稱為“m型試驗”;這樣試驗的r個因子的每一種水平組合稱做“一個試驗點”;m型試驗共有m個試驗點;將m個試驗都實施的析因試驗稱做“全面試驗”,否則稱做“部分試驗”。方差分析法是分析多因子析因試驗最重要的統計方法。

基本介紹

  • 中文名:析因試驗
  • 外文名:factorial experiment
  • 所屬學科:數學
  • 所屬問題:統計學(試驗設計)
  • 相關概念:方差分析法
  • 簡介:一種多因素的交叉分組試驗
  • 分類:單因子試驗、多因子試驗
基本介紹,2×2析因試驗,2×2×3×2析因試驗,析因試驗設計,

基本介紹

析因試驗是一種多因素的交叉分組試驗。它不僅可檢驗每個因素各水平間的差異,而且可檢驗各因素間的互動作用。兩個或多個因素間如存在互動作用,表示各因素不是各自獨立的,而是一個因素的水平有改變時,另一個或幾個因素的效應也相應有所改變;反之,如不存在互動作用,表示各因素具有獨立性,一個因素的水平有所改變時不影響其他因素的效應。下面介紹最簡單的兩因素析因試驗(以“2×2”為例)和較複雜的四因素析因試驗(以“2×2×3×2”為例)的設計及其分析方法。

2×2析因試驗

2×2設計表示有兩個因素,每個因素各有兩個水平,共有四個組合。如以A1表示A因素1水平,A2表示A因素2水平,B1表示B因素1水平,B2表示B因素2水平,各因素的水平之間逐個組合,即成2×2設計,其模型如下:
析因試驗
圖1
2×2析因分析時,首先應對4個組合的試驗結果作方差齊性檢驗,如已滿足齊性要求,即可進行方差分析。方法如下:
(1)作檢驗假設。有兩種: 一是A因素或B因素的各水平間的比較,H0為A因素或B因素兩水平的總體均數相等,即μ1=μ2;二是分析A、B兩因素的互動作用,H0為兩因素間無互動作用,即彼此獨立。
(2)將總變異的離均差平方和SS及自由度v按變異來源分為A因素、B因素、互動作用A×B及誤差四部分。SSA和SSB的計算公式見條目“單因素多個樣本均數比較”。A、B兩因素互動作用的離均差平方和SSA×B的計算需先列副表,再用式(1)及式(2)。
式中SST(AB)為A、B兩因素副表總變異的離均差平方和;XA1B1為A因素1水平與B因素1水平組合的樣本觀察值,余類推;n為分子中每個合計所包含的例數,C'為校正數(C'區別於因素C)。自由度v的計算:總變異v=總例數-1,某因素v=該因素的水平數-1,互動作用v=有關因素的自由度之積,2×2析因分析中v均為1。
(3)分別計算各因素及互動作用的均方MS(=SS/v),並與誤差的均方相比得F值。
(4)查F界值表得P值,按所取檢驗水準作出推斷結論。

2×2×3×2析因試驗

2×2×3×2設計,表示有四個因素,各因素依次有2、2、3、2個水平,共有2×2×3×2=24個組合。如以ABCD表示四個因素,A1、A2表示A因素的兩個水平,同樣,B1、B2,C1,、C2、C3,D1、D2分別表示B、C、D因素的各個水平,則2×2×3×2設計的模型如下:

相關詞條

熱門詞條

聯絡我們