李敬鋒

李敬鋒

李敬鋒,男,國家傑出青年基金獲得者、現任清華大學材料學院副院長、新能源材料研究所所長、湖北師範大學“磁湖學者”講座教授。

基本介紹

  • 中文名:李敬鋒
  • 國籍中國
  • 畢業院校:華中科技大學
  • 主要成就:國家傑出青年基金獲得者
  • 代表作品:《Journal of Materials Processing Technology》
  • 職務清華大學材料學院副院長、新能源材料研究所所長
教育背景,工作履歷,學術兼職,研究領域,獎勵與榮譽,學術成果,論著與專利,代表性論文,[授權專利],

教育背景

1980.9-1984.7 華中科技大學機械工程2系金屬材料及熱處理專業學士學位
1985.10-1991.3 日本東北大學(Tohoku University)工學部材料系,工學碩士(1988.3), 工學博士(1991.3)

工作履歷

1991.3-1992.2 日本陶瓷技術株式會社特別研究人員(博士後)
李敬鋒 教授李敬鋒 教授
1992.3-2002.9 日本東北大學工學部材料系助理教授(1992-1997);副教授(1997-2002)
2002.2- 清華大學材料科學與工程系教授,博士生導師,系副主任
2013.1- 清華大學材料學院教授,博士生導師,副院長(-2016)

學術兼職

《Journal of Materiomics》主編,《矽酸鹽學報》副主編,《NPG Asia Materials》顧問編委,《Journal of Advanced Ceramics》、《Journal of Asia Ceramic Societies》、《Rare Metals》、《Materials Today Physics》、《Energy Harvesting and Systems》、《粉末冶金技術》編委、2008年至2013年曾擔任《Journal of Materials Processing Technology》副主編(Subject Editor);國際梯度功能材料顧問委員會理事,IEEE-TUFFC ferroelectric committee 委員,中國矽酸鹽學會理事,中國矽酸鹽學會薄膜與塗層分會副理事長,中國微米納米技術學會理事,中國材料研究學會理事,中國材料研究學會熱電材料與套用分會副主任委員,中國金屬學會粉末冶金分會第六屆委員會委員

研究領域

壓電陶瓷與器件,熱電材料與器件,MEMS材料技術,陶瓷複合材料及其力學性能
[研究興趣]:無鉛壓電陶瓷,壓電陶瓷薄膜與MEMS微結構,壓電複合材料,高性能熱電半導體及其MEMS微型熱電器件,功能梯度材料,複合陶瓷的強韌性,壓電陶瓷的力學性能

獎勵與榮譽

1995年獲日本金屬學會青年研究者獎
1998年獲日本原田研究獎
2003年獲國家傑出青年科學基金
2012年獲2010年度北京市科學技術獎三等獎(高性能鈮酸鉀鈉基無鉛壓電陶瓷的研發)
2012年獲2011年度北京市科學技術獎三等獎(高性能納米複合結構熱電材料與微器件技術)
2014年獲Journal of the American Ceramic Society Author Loyalty Recognition Award

學術成果

論著與專利

主編:新材料概論(冶金工業出版社,2004),新能源材料及其套用技術(清華大學出版社,2005)
參加編寫:先進複合材料(機械工業出版社,2003),熱電變換材料(日文,日刊工業新聞社,2005),Materials Aspect of Thermoelectricity, Edited by Citirad Uher, CRC Press (2016)

代表性論文

1)J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng and F.-Z. Yao, (K, Na)NbO3-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies and Remaining Challenges, Journal of the American Ceramic Society, 96 (2013)3677-3696. (Feature/Review article, cover page)
2)J.-F. Li, W. S. Liu, L.-D. Zhao, M. Zhou, High-performance nanostructured thermoelectric materials, NPG Asia Materials, 2 (2010) 152-158. (Review).
3)J.-F. Li, Y. Pan, C.-F. Wu, F.-H. Sun, T.-R. Wei, Processing of advanced thermoelectric materials, Science China Technological Science, 60(2017)1347. (Review)
4)Cheng Chang, Minghui Wu, Dongsheng He, Yanling Pei, Chao-Feng Wu, Xuefeng Wu, Hulei Yu, Fangyuan Zhu, Kedong Wang, Yue Chen, Li Huang, Jing-Feng Li, Jiaqing He, Li-Dong Zhao, 3D charge and 2D phonon transports leading to extremely high out-of-plane ZT in n-type SnSe crystals, Science, 360(2018)778-783.
5)Huaichao Tang, Fu-Hua Sun, Jin-Feng Dong, Asfandiyar, Hua-Lu Zhuang, Yu Pan, Jing-Feng Li, Graphene network in copper sulfide leading to enhanced thermoelectric properties and thermal stability, Nano Energy, 49(2018)267-273.
6)Wei, Wei, Cheng Chang, Teng Yang, Jizi Liu, Huaichao Tang, Jian Zhang, Yusheng Li, Feng Xu, Zhidong Zhang, Jing-Feng Li, Guodong Tang, Achieving High Thermoelectric Figure of Merit in Polycrystalline SnSe via Introducing Sn Vacancies, Journal of the American Chemical Society, 140(2018) 499-505.
7)Lei Zhao, Qing Liu, Jing Gao, Shujun Zhang, Jing-Feng Li, Lead-Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance, Advanced Materials, 29(2017)1701824.
8)M.-H. Zhang, K. Wang, Y.-J. Du, G. Dai, W. Sun, G. Li, D. Hu, H. C. Thong, C. L. Zhao, X.-Q. Xi, Z.-X. Yue, J.-F. Li, High and Temperature-Insensitive Piezoelectric Strain in Alkali Niobate Lead-free Perovskite, Journal of the American Chemical Society, 139(2017) 3889-3895.
9)Chao-Feng Wu, Tian-Ran Wei, Fu-Hua Sun and Jing-Feng Li, Nanoporous PbSe–SiO2 Thermoelectric Composites, Advanced Science, 4(2017)1700199
10)Yu Pan, Umut Aydemir, Fu-Hua Sun, Chao-Feng Wu, Thomas C. Chasapis, G. Jeffrey Snyder and Jing-Feng Li, Self-Tuning n-Type Bi2(Te,Se)3/SiC Thermoelectric Nanocomposites to Realize High Performances up to 300 °C, Advanced Science, 4(2017)1700259.
11)Jin Luo, Wei Sun, Zhen Zhou, Hyun-Young Lee, Ke Wang, Fangyuan Zhu, Yu Bai, Zhan Jie Wang and Jing-Feng Li, Monoclinic (K,Na)NbO3 Ferroelectric Phase in Epitaxial Films, Advanced Electronic Materials, 3(2017) 1700226 (cover page)
12)Z. L. Li, J.-F. Dong, F.-H. Sun, S. Hirono, J.-F. Li, Significant Enhancement of the Thermoelectric Performance of Higher Manganese Silicide by Incorporating MnTe Nanophase Derived from Te Nanowire, Chemistry of Materials, 29(2017)7378.
13)F.-Z. Yao, K. Wang, W. Jo, K. G. Webber, T. P. Comyn, J.-X. Ding, B. Xu, L.-Q. Cheng, M.-P. Zheng, Y.-D. Hou, J.-F. Li, Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics, Advanced Functional Materials, 26(2016)1217-1224.
14)T.-R. Wei, G. Tan, X. Zhang, C.-F. Wu, J.-F. Li, V. P. Dravid, G. J. Snyder, M. G. Kanatzidis, Distinct Impact of Alkali-Ion Doping on Electrical Transport Properties of Thermoelectric p-type Polycrystalline SnSe, Journal of the American Chemical Society, 138(2016)8875-8882.
15)Y. Pan, J.-F. Li, Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma textured-microstructure, NPG Asia Materials, 8(2016)e275.
16)W. Sun, J.-F. Li, Q. Yu, L.-Q. Cheng, Phase transition and piezoelectricity of sol-gel-processed Sm-doped BiFeO3 thin films on Pt(111)/Ti/SiO2/Si substrates, Journal of Materials Chemistry C, 3 (2015)2115-2122.
17)Y. Pan, T.-R. Wei,C.-F. Wu, J.-F. Li, Electrical and thermal transport properties of spark plasma sintered n-type Bi2Te3-xSex alloys: combined effect of point defect and Se content, Journal of Materials Chemistry C, 2(2015)17302-17306.
18)D. Wu, L.-D. Zhao, X. Tong, W. Li, L. J. Wu, Q. Tan, Y. L. Pei, L. Huang, J.-F. Li, Y. M. Zhu, M. G. Kanatzidis, J. G. He, JQ, Superior thermoelectric performance in PbTe-PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration, Energy & Environmental Science, 8(2015) 2056-2068.
19)L.-D. Zhao, J. Q. He, D. Berardan, Y.-H. Lin, J.-F. Li, C.-W. Nan, N. Dragoe, BiCuSeO oxyselenides: new promising thermoelectric materials, Energy & Environmental Science, 7(2014)2900-2924
20)Z.-Y. Li and J.-F. Li, Fine-Grained and Nanostructured AgPbmSbTem+2 Alloys with High Thermoelectric Figure of Merit at Medium Temperature, Advanced Energy Materials, 4(2014)1300937.
21)Q. Tan, L-D. Zhao, J.-F. Li, C.-F. Wu, T.-R. Wei, Z.-B. Xing, M. G. Kanatzidis, Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS, Journal of Materials Chemistry A, 2(2014)17302-17306.
22)T.-R. Wei, H. Wang, Z. M. Gibbs, C.-F. Wu, G. J. Snyder, J.-F. Li, Thermoelectric properties of Sn-doped p-type Cu3SbSe4: a compound with large effective mass and small band gap, Journal of Materials Chemistry A, 2(2014)13527-13533.
23)L.-Q. Cheng, K. Wang, J.-F. Li, Y. M. Liu, J. Y. Li, Piezoelectricity of lead-free (K, Na)NbO3 nanoscale single crystals, Journal of Materials Chemistry C, 2(2014)9091-9098. (Front cover article).
24)Q. Yu, J.-F. Li, F.-Y. Zhu, J.-Y. Li, Domain evolution of tetragonal Pb(ZrxTi1-x) O-3 piezoelectric thin films on SrTiO3 (100) surfaces: combined effects of misfit strain and Zr/Ti ratio, Journal of Materials Chemistry C, 2(2014)5836-5841.
25)K. Wang, F.-Z. Yao, W. Jo, D. Gobeljic, V. V. Shvartsman, D. C. Lupascu, J.-F. Li, J. Rodel, Temperature-Insensitive (K, Na)NbO3-Based Lead-free Piezoactuator Ceramics, Advanced Functional Materials, 23, 4079-4086 (2013)
26)J. H. Li, Q. Tan, J.-F. Li, et. al., BiSbTe-Based Nanocomposites with High ZT: The SiC Nanodispersion on Thermoelectric Properties, Advanced Functional Materials, 23 (2013) 4317-4323.
27)F. Li, J.-F. Li, L.-D. Zhao, K. Xiang, Y. Liu, B.-P. Zhang, Y.-H. Lin, C.-W. Nan, H.-M. Zhu, Polycrystalline BiCuSeO oxide as a potential thermoelectric material, Energy & Environmental Science, 5 (2012) 7188-7195.
28)Y. Xu, Q. Yu, J.-F. Li, A facile method to fabricate vertically aligned (K, Na)NbO3 lead-free piezoelectric nanorods, Journal of Materials Chemistry, 22(2012)23221.
29)Y. Liu, L.-D. Zhao, Y. Liu, J. Lan, W. Xu, F. Li, B.-P. Zhang, D. Berardan, N. Dragoe, Y.-H. Lin, C.-W. Nan, J.-F. Li, and H. Zhu, Remarkable Enhancement in Thermoelectric Performance of BiCuSeO by Cu Deficiencies, Journal of the American Chemical Society, 133, (2011) 20112-20115
30)D.-W. Liu, J.-F. Li, Microfabrication of thermoelectric modules by patterned electrodeposition using a multi-channel glass template, Journal of Solid State Electrochemistry, 15[3] 479-484 (2011).
31)J.-F. Li, Z.-X. Zhu, and F.-P. Lai, Thickness-Dependent Phase Transition and Piezoelectric Response in Textured Nb-Doped Pb(Zr0.52Ti0.48)O3 Thin Films, J. Phys. Chem. C, 114, 41, (2010)17796-17801.
32)K. Wang, J.-F. Li, Domain Engineering of Lead-free Li-modified (K, Na)NbO3 Polycrystals with Highly Enhanced Piezoelectricity, Advanced Functional Materials, 20(2010) 1924-1929.
33)Z.-X. Zhu, J.-F. Li, Y. Y. Liu, J. Y. Li, Shifting of morphotropic phase boundary and superior piezoelectric response in Nb-doped Pb(Zr,Ti)O3 epitaxial thin films, Acta Materialia, 57 (2009) 4288–4295.34)M. Zhou, J.-F. Li, T. Kita, Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance, Journal of the American Chemical Society, 130 (2008) 4527-4532.
35)K. Wang, J.-F. Li, Analysis of crystallographic evolution in (Na,K)NbO3-based lead-free piezoceramics by x-ray diffraction, Applied Physics Letters, 91(2007) 262902.
36)J.-F. Li, K. Wang, B. P. Zhang, L. M. Zhang, Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering, Journal of the American Ceramic Society 89 (2006) 706.
37)H. Wang, J.-F. Li, C.-W. Nan, M. Zhou, W.S. Liu, B.-P. Zhang and T. Kita, High-Performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering, Applied Physics Letters, 88 (9) 092104 (2006).
38)J.-F. Li, K. Wang, B. P. Zhang, L. M. Zhang, Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering, Journal of the American Ceramic Society 89 (2006) 706-709.
39)Y. H. Zhen, J.-F. Li, Normal sintering of (K,Na)NbO3-based ceramics: Influence of sintering temperature on densification, microstructure, and electrical properties, Journal of the American Ceramic Society, 89 (2006)3669-3675
40)W. Gong, J.-F. Li, C.-E Peng, Z. Gui and L. T. Li, In-Plane Aligned Pb(Zr, Ti)O3 Microbelts Fabricated by Near Migration and Restricted Growth, Advanced Materials, 17 (2005)1952-1956.
41)W. Gong, J.-F. Li*, X. C. Chu, Z. L. Gui and L. T. Li , Combined effect of preferential orientation and Zr/Ti atomic ratio on electrical properties of Pb(ZrxTi1-x)O3 thin films, Journal of Applied Physics, 96 [1](2004) 590-595.
42)J.-F. Li, S. Tanaka, T. Umeki, S. Sugimoto, M. Esashi, R. Watanabe, Microfabrication of ThermoelectricMicrodevices by Silicon Molding Process, SENSORS AND ACTUATORS A-PHYSICAL 108 (2003)97-102.
43)J.-F. Li, K. Takagi, N. Terakubo, R. Watanabe, Electrical and mechanical properties of piezoelectric ceramic/metal composites in the Pb(Zr,Ti)O3/Pt system, Applied Physics Letters, 79, (2001)2441-2443.
44)J.-F. Li, W. Pan, F. Sato, R. Watanabe, Mechanical Properties of Polycrystalline Ti3SiC2 at Ambient and Elevated Temperatures, Acta Materialia, 49,937-945 (2001).
45)S. Wang, J.-F. Li, K. Wakabayashi, M. Esashi, R. Watanabe, Lost Silicon Mold Process for PZT Microstructures, Advanced Materials 11 (1999)873-876

[授權專利]

[1] 鈮酸鉀鈉基無鉛壓電陶瓷及其製備方法, ZL2013 1 0237035.2
[2] 具有微米級熱電臂的微型熱電元件的微加工方法, ZL200410038297.7
[3] 一種氮化矽陶瓷部件的微加工方法,ZL200510011255.9
[4] 鈦酸鉍鈉-鋯鈦酸鋇無鉛壓電陶瓷及其製備方法,ZL200410088425.9
[5 ]鈮酸鉀鈉系無鉛壓電陶瓷及其製備方法,ZL200410068962.7
[6] 一種壓電陶瓷膜的製備方法, ZL200510063084.4
[7] 一種納米SiC/Bi2Te3基熱電材料的製備方法, ZL200510130794.4
[8] Ag-Pb-Sb-Te熱電材料及其製備方法, ZL200510114218.0
[9] 金屬材料和陶瓷材料對稱梯度複合材料的製備方法, ZL200610089765.2
[10] 一種多孔壓電陶瓷及其製備方法,ZL200610114599.7
[11] 納米SiC顆粒複合CoSb3基熱電材料及其製備方法,ZL200610144006.1
[12] 一種細晶擇優取向 Bi2Te3 熱電材料的製備方法,ZL200710175308.X
[13] 一種提高Ag-Pb-Sb-Te熱電材料性能的方法,ZL200810103887.1
[14] 一種TiNiSn基熱電化合物的製備方法,ZL200810119192.2
[15] 一種四元方鈷礦結構的熱電材料及其製備方法,ZL200810119808.6
[16] 一種提高Bi-S二元體系熱電材料性能的方法,ZL200810211660.9
[17] 一種製備具有高縱橫比熱電臂的微型熱電器件的方法,ZL200810239624.3
[18] 一種超微細壓電陶瓷陣列結構複合材料及其製備方法,ZL200910076528.6
[19] 一種Ag納米顆粒複合CoSb3基熱電材料的製備方法,ZL200810119809.0
[20] 無鉛壓電陶瓷/聚合物1-3結構複合材料及其加工方法,ZL200810103886.7
[21] 化合物熱電材料およびその製造方法,日本專利許可第4291842號
[22] 太陽光熱複合発電システムにおける太陽熱集熱體および該太陽熱集熱體を利用した太陽光熱発電モジュール,2011年授權,日本專利許可 第4878382號
[23] 太陽熱集熱體以及太陽光熱發電模組, ZL201010108115.4
[24] 一種Sn-S基熱電化合物及其製備方法, ZL201210265582.7
[25] 鈮酸鉀鈉基無鉛壓電陶瓷及其製備方法, ZL2013 1 0237035.2

相關詞條

熱門詞條

聯絡我們