有限群的上同調(第2版)

有限群的上同調(第2版)

《有限群的上同調(第2版)》是2016年世界圖書出版公司出版的著作,作者是Alejandro、Adem 。

基本介紹

  • 書名:《有限群的上同調(第2版)》
  • 作者:Alejandro、Adem
  • 出版社:世界圖書出版公司
  • 出版時間:2016年03月01日
  • ISBN:9787519202569
內容簡介,目錄,

內容簡介

《有限群的上同調(第2版 英文版)》介紹了重要也是有用的代數和拓撲方法,研究了有限群的上同調與同倫論、表示論和群作用之間的關係。《有限群的上同調(第2版 英文版)》凝聚了作者多年科研和教學成果,適用於科研工作者、高校教師和研究生。

目錄

Introduction
Ⅰ.Group Extensions, Simple Algebras and Cohomology
Ⅰ.0 Introduction
Ⅰ.1 Group Extensions
Ⅰ.2 Extensions Associated to the Quaternions
The Group of Unit Quaternions and SO(3)
The Generalized Quaternion Groups and Binary Tetrahedral Group
Ⅰ.3 Central Extensions and S1 Bundles on the Torus T2
Ⅰ.4 The Pull—back Construction and Extensions
Ⅰ.5 The Obstruction to Extension when the Center is Non—Trivial The Dependence of/z(gl, g2, g3) on f' and the Lifting L
Ⅰ.6 Counting the Number of Extensions
Ⅰ.7 The Relation Satisfied by/z(gl, g2, g3)
A Certain Universal Extension
Each Element in H3φ(G; C) Represents an Obstruction
Ⅰ.8 Associative Algebras and H2φ(G; C)
Basic Structure Theorems for Central Simple F—Algebras
Tensor Products of Central Simple F—Algebras
The Cohomological Interpretation of Central Simple Division Algebras
Comparing Different Maximal Subfields, the Brauer Group
Ⅱ.Classifying Spaces and Group Cohomology
Ⅱ.0 Introduction
Ⅱ.1 Preliminaries on Classifying Spaces
Ⅱ.2 Eilenberg—MacLane Spaces and the Steenrod Algebra at(p)
Axioms for the Steenrod Algebra A(2)
Axioms for the Steenrod Algebra A(p)
The Cohomology of Eilenberg—MacLane Spaces
The Hopf Algebra Structure on ,A(p)
Ⅱ.3 Group Cohomology
Ⅱ.4 Cup Products
Ⅱ.5 Restriction and Transfer
Transfer and Restriction for Abelian Groups
An Alternate Construction of the Transfer
Ⅱ.6 The Cartan—Eilenberg Double Coset Formula
Ⅱ.7 Tate Cohomology and Applications
Ⅱ.8 The First Cohomology Group and Out(G)
Ⅲ.Invariants and Cohomology of Groups
Ⅲ.0 Introduction
Ⅲ.I General Invariants
Ⅲ.2 The Dickson Algebra
Ⅲ.3 A Therem of Serre
Ⅲ.4 Symmetric Invariants
Ⅲ.5 The Cardenas—Kuhn Theorem
Ⅲ.6 Discussion of Related Topics and Further Results
The Dickson Algebras and Topology
The Ring of Invariants for Sp2n(F2)
The Invariants for Subgroups of GL4(F2)
Ⅳ.Spectral Sequences and Detection Theorems
Ⅳ.0 Introduction
Ⅳ.1 The Lyndon—Hochschild—Serre Spectral Sequence: Geometric Approach
Wreath Products
Central Extensions
A Lemma of Quillen—Venkov
Ⅳ.2 Change of Rings and the Lyndon—Hochschild—Serre Spectral Sequence
The Dihedral Group D2n
The Quaternion Group Q8
Ⅳ.3 Chain Approximations in Acyclic Complexes
Ⅳ.4 Groups with Cohomology Detected by Abelian Subgroups
Ⅳ.5 Structure Theorems for the Ring H*(G; Fp)
Evens—Venkov Finite Generation Theorem
The Quillen—Venkov Theorem
The Krull Dimension of H*(G; Fp)
Ⅳ.6 The Classification and Cohomology Rings of Periodic Groups
The Classification of Periodic Groups
The mod(2) Cohomology of the Periodic Groups
Ⅳ.7 The Definition and Properties of Steenrod Squares
The Squaring Operations
The P—Power Operations for p Odd
Ⅴ.G.Complexes and Equivariant Cohomology
Ⅴ.0 Introduction to Cohomological Methods
Ⅴ.1 Restriction on Group Actions
Ⅴ.2 General Properties of Posets Associated to Finite Groups
Ⅴ.3 Applications to Cohomoiogy
The Sporadic Group M11
The Sporadic Group J1
Ⅵ.The Cohomology of the Symmetric Groups
Ⅵ.0 Introduction
Ⅵ.I Detection Theorems for H*(Sn; Fp) and Construction of Generators
The Sylow p—Subgroups of Sn
The Conjugacy Classes of Elementary p—Subgroups in Sn
Weak Closure Properties for Vn(p)□ Sylp,(Spn) and (Vn—i(p))pi □ Spn—1□Z/p
The Image of res *: H*(Spn;IFp)→H*(Vn(p);Fp)
Ⅵ.2 Hopf Algebras
The Theorems of Borel and Hopf
Ⅵ.3 The Structure of H*(Sn;Fp)
Ⅵ.4 More Invariant Theory
Ⅵ.5 H*(Sn), n = 6, 8, 10, 12
Ⅵ.6 The Cohomology of the Alternating Groups
Ⅶ.Finite Groups of Lie Type
Ⅶ.1 Preliminary Remarks
Ⅶ.2 The Classical Groups of Lie Type
Ⅶ.3 The Orders of the Finite Orthogonal and Symplectic Groups.
Ⅶ.4 The Cohomology of the Groups GLn(q)
Ⅶ.5 The Cohomology of the Finite Orthogonal Groups
Ⅶ.6 The Groups H*(Sp2n(q); F2)
Ⅶ.7 The Exceptional Chevalley Groups
Ⅷ.Cohomology of Sporadic Simple Groups
Ⅷ.0 Introduction
Ⅷ.1 The Cohomology of M11
Ⅷ.2 The Cohomology of J1
Ⅷ.3 The Cohomology of M12
The Structure of the Mathieu Group M12
Ⅷ.4 Discussion of H*(M12; F2)
Ⅷ.5 The Cohomology of Other Sporadic Simple Groups
The O'Nan Group O'N
The Rank Four Sporadic Groups
The Lattice of Subgroups of 2 □ 2 □ 2
The Cohomology Structure of 22+4
Detection and the Cohomology of J2, J3
The Cohomology of the Groups M22, M23, SU4(3), McL, and Ly
Remark on the Cohomology of M23
Ⅸ.The Plus Construction and Applications
Ⅸ.0 Preliminaries
Ⅸ.1 Definitions
Ⅸ.2 Classification and Construction of Acyclic Maps
Ⅸ.3 Examples and Applications
The Infinite Symmetric Group
The General Linear Group over a Finite Field
The Binary Icosahedral Group
The Mathieu Group M12
The Group J1
The Mathieu Group M23
Ⅸ.4 The Kan—Thurston Theorem
Ⅹ.The Schur Subgroup of the Brauer Group
Ⅹ.0 Introduction
Ⅹ.1 The Brauer Groups of Complete Local Fields
Valuations and Completions
The Brauer Groups of Complete Fields with Finite Valuations
Ⅹ.2 The Brauer Group and the Schur Subgroup for Finite Extensions of Q
The Brauer Group of a Finite Extension of Q
The Schur Subgroup of the Brauer Group
The Group Q/Z and its Aut Group
Ⅹ.3 The Explicit Generators of the Schur Subgroup
Cyclotomic Algebras and the Brauer—Witt Theorem
The Galois Group of the Maximal Cyclotomic Extension of F
The Cohomological Reformulation of the Schur Subgroup
Ⅹ.4 The Groups H*cont(GF; Q/Z) and H*cont(Gv; Q/Z)
The Cohomology Groups H*cont(GF; Q/Z)
The Local Cohomology with Q/Z Coefficients
The Explicit Form of the Evaluation Maps at the Finite Valuations
Ⅹ.5 The Explicit Structure of the Schur Subgroup, S(F)
The Map H*cont(Gv;Q/Z)→H2coont(Gv;Qp,cycl)
The Invariants at the Infinite Real Primes
The Remaining Local Maps
References
Index

相關詞條

熱門詞條

聯絡我們