曹炳陽

曹炳陽

清華大學航天航空學院副院長,教授,國家傑青。2010年入選清華大學221青年人才計畫,2011年入選教育部新世紀優 秀人才支持計畫,2013年獲國家自然科學優 秀青年基金,2018年獲國家自然科學傑 出青年基金。曾獲清華大學青年教師教學優 秀獎(2014)、中國工程熱物理學會吳仲華優 秀青年學者獎(2014)、教育部自然科學一等獎(2018)等榮譽。主要研究領域為微納尺度傳熱、熱功能材料和先進熱管理技術,主持國家自然科學基金、國家重點研發計畫、國家重大科技專項、教育部、裝備部、科工局及軍科委等二十多項課題,發表SCI論文120餘篇。現任中國工程熱物理學會傳熱傳質青年委員會主任、中國工程熱物理學會傳熱傳質專業委員會委員、中國航空學會燃燒與傳熱專業委員會委員、中國宇航學會空間能源專業委員會委員、中國複合材料學會導熱複合材料及套用專業委員會委員、中國熱管理產業技術創新戰略聯盟理事、亞洲熱科學與工程聯合會執行理事。擔任《ES Energy & Environment》主編,《Scientific Reports》、《PLOS One》、《Advances in Materials Research》等5個國際期刊編委。

基本介紹

  • 中文名:曹炳陽
  • 國籍:中國
  • 民族:漢
  • 職業:教授
  • 畢業院校:清華大學
  • 主要成就:教授,博導,工學博士,優青,傑青 
教育背景,工作履歷,學術兼職,主講課程,研究方向,獎勵與榮譽,學術成果,

教育背景

1994-2001年在山東大學能源與動力工程學院獲得學士和碩士學位。
2001-2005年在清華大學航天航空學院獲得博士學位。

工作履歷

2005.07-2008.11,清華大學講師。
曹炳陽
2008.12-2013.11, 清華大學副教授。
2013.12起,清華大學航天航空學院(破格)教授。
2016.06起,清華大學航天航空學院副院長。

學術兼職

中國工程熱物理學會傳熱傳質青年委員會主任
中國工程熱物理學會傳熱傳質專業委員會委員
中國航空學會燃燒與傳熱專業委員會委員
中國宇航學會空間能源專業委員會委員
中國複合材料學會導熱複合材料及套用專業委員會委員
中國熱管理產業技術創新戰略聯盟理事
亞洲熱科學與工程聯合會執行理事
《ES Energy & Environment》主編
《Scientific Reports》《PLOS One》和《Advances in Materials Research》等5個國際期刊編委
國家/北京市自然科學基金委、教育部/科技部/工信部/中組部/裝發部科研基金和科技獎勵、國家發改委、國家能源局等部門專家。

主講課程

本科生必修課《新概念熱學》和《工程熱力學》、研究生學位課《傳熱理論新進展》和《現代力學與熱科學進展》主講教師。

研究方向

微納尺度流動與傳熱、熱功能材料、先進熱管理技術、傳熱最佳化理論與節能技術、傳熱傳質過程的分子模擬等。
主要研究領域為微納尺度傳熱、熱功能材料和先進熱管理技術,主持國家自然科學基金、國家重點研發計畫、國家重大科技專項、教育部、裝備部、科工局及軍科委等二十多項課題,發表SCI論文120餘篇。

獎勵與榮譽

[1]2018,教育部自然科學獎一等獎
[2]2018,國家自然科學基金傑出青年基金
[3]2014,中國工程熱物理學會吳仲華優秀青年學者獎
[4]2014,清華大學青年教師教學優秀獎
[5]2013,國家自然科學基金優秀青年基金
[6]2011,教育部新世紀優 秀人才支持計畫
[7]2010,入選清華大學221青年人才支持計畫
[8]2008,教育部自然科學獎一等獎

學術成果

發表SCI論文120餘篇,代表論文:
[1]B.Y. Cao*, J.H. Zou, G.J. Hu, G.X. Cao. Enhanced thermal transport across multilayer graphene and water by interlayer functionalization. Applied Physics Letters, 2018, 112: 041603
[2]H. Bao, J. Chen, X.K. Gu, B.Y. Cao*. A review of simulation methods in micro/nanoscale heat conduction. ES Energy & Environment, 2018, 1: 16-55
[3]Y.C. Hua, B.Y. Cao*. Interface-based two-way tuning of the in-plane thermal transport in nanofilms. Journal of Applied Physics, 2018, 123: 114304
[4]H.L. Li, Y.C. Hua, B.Y. Cao*. A hybrid phonon Monte Carlo-diffusion method for ballistic-diffusive heat conduction in nano- and micro- structures. International Journal of Heat and Mass Transfer, 2018, 127: 1014-1022
[5]B.D. Nie, B.Y. Cao*. Reflection and refraction of a thermal wave at an ideal interface. International Journal of Heat and Mass Transfer, 2018, 116: 314-328
[6]X.M. Yang*, J.X. Xu, S.H. Wu, M. Yu, B. Hu, B.Y. Cao*, J.H. Li. A molecular dynamics simulation study of PVT properties for H2O/H2/CO2 mixtures in near-critical and supercritical regions of water. International Journal of Hydrogen Energy, 2018, 43(24): 10980-10990
[7]C. Si, L. Li, G. Lu, B.Y. Cao*, et al. A comprehensive analysis about thermal conductivity of multi-layer graphene with N-doping, -CH3 group and single vacancy. Journal of Applied Physics, 2018, 123: 135101
[8]Z.Q. Ye, B.Y. Cao*. Thermal rectification at the bimaterial nanocontact interface. Nanoscale, 2017, 9: 11480-11487
[9]J.H. Zou, B.Y. Cao*. Phonon thermal properties of graphene on h-BN from molecular dynamics simulations. Applied Physics Letters, 2017, 110: 103106
[10]Y.C. Hua, B.Y. Cao*. Slip boundary conditions in ballistic-diffusive heat transport in nanostructures. Nanoscale and Microscale Thermophysical Engineering, 2017, 21(3): 159-176
[11]Y.C. Hua, B.Y. Cao*. An efficient two-step Monte Carlo method for phonon heat conduction in nanostructures. Journal of Computational Physics, 2017, 342: 253–266
[12]Y.C. Hua, B.Y. Cao*. Anisotropic heat conduction in two-dimensional periodic silicon nanoporous films. The Journal of Physical Chemistry C, 2017, 121(9): 5293–5301
[13]Y.C. Hua, B.Y. Cao*. Cross-plane heat conduction in nanoporous silicon thin films by phonon Boltzmann transport equation and Monte Carlo simulations. Applied Thermal Engineering, 2017, 111: 1401-1408
[14]D.S. Tang, B.Y. Cao*. Superballistic characteristics of transient phonon ballistic-diffusive conduction. Applied Physics Letters, 2017, 111: 113109
[15]D.S. Tang, B.Y. Cao*. Ballistic thermal wave propagation along nanowires modeled using phonon Monte Carlo simulations. Applied Thermal Engineering, 2017, 117: 609–616
[16]S.N. Li, B.Y. Cao*. Mathematical and information-geometrical entropy for phenomenological Fourier and non-Fourier heat conduction. Physical Review E, 2017, 96(3): 032131
[17]X.M. Yang*, D.P. Yu, B.Y. Cao*. Giant thermal rectification from single-carbon nanotube–graphene junction. ACS Applied Materials & Interfaces, 2017, 9(28): 24078–24084
[18]X.M. Yang*, Y.H. Huang, B.Y. Cao*, A.C. To. Ultrahigh thermal rectification in pillared graphene structure with carbon nanotube-graphene intramolecular junctions. ACS Applied Materials & Interfaces, 2017, 9: 29?35
[19]J.F. Xie, B.Y. Cao*. Fast nanofluidics by travelling surface waves. Microfluidics and Nanofluidics, 2017, 21: 111
[20]C. Si, G. Lu, B.Y. Cao*, et al. Effects of torsion on the thermal conductivity of multi-layer graphene. Journal of Applied Physics, 2017, 121: 205102
[21]B.Y. Cao*, W.J. Yao, Z.Q. Ye. Networked nanoconstrictions: An effective route to tuning the thermal transport properties of graphene. Carbon, 2016, 96: 711-719
[22]B.Y. Cao*, M. Yang, G.J. Hu. Capillary filling dynamics of polymer melts in nanopores: Experiments and rheological modelling. RSC Advances, 2016, 6: 7553-7559
[23]J.H. Zou, Z.Q. Ye, B.Y. Cao*. Phonon thermal properties of graphene from molecular dynamics using different potentials. The Journal of Chemical Physics, 2016, 145: 134705
[24]Z.Q. Ye, B.Y. Cao*. Nanoscale thermal cloaking in graphene by chemical functionalization. Physical Chemistry Chemical Physics, 2016, 18: 32952 - 32961
[25]Y.C. Hua, B.Y. Cao*. The effective thermal conductivity of ballistic–diffusive heat conduction in nanostructures with internal heat source. International Journal of Heat and Mass Transfer, 2016, 92: 995-1003
[26]Y.C. Hua, B.Y. Cao*. Ballistic-diffusive heat conduction in multiply-constrained nanostructures. International Journal of Thermal Sciences, 2016, 101: 126-132
[27]S.N. Li, B.Y. Cao*. Generalized variational principles for heat conduction models based on Laplace transform. International Journal of Heat and Mass Transfer, 2016, 103: 1176–1180
[28]D.S. Tang, Y.C. Hua, B.Y. Cao*. Thermal wave propagation through nanofilms in ballistic-diffusive regime by Monte Carlo simulations. International Journal of Thermal Sciences, 2016, 109: 81-89
[29]D.S. Tang, Y.C. Hua, B.D. Nie, B.Y. Cao*. Phonon wave propagation in ballistic-diffusive regime. Journal of Applied Physics, 2016, 119: 124301
[30]Z.Q. Ye, B.Y. Cao*, W.J. Yao, T.L. Feng, X.L. Ruan*. Spectral phonon thermal properties in graphene nanoribbons. Carbon, 2015, 93: 915-523
[31]R.Y. Dong, B.Y. Cao*. Superhigh-speed unidirectional rotation and its decoupled dynamics of a carbon nanotube in a sheared fluid. RSC Advances, 2015, 5: 88719 - 88724
[32]T.L. Feng, X.L. Ruan, Z.Q. Ye, B.Y. Cao*. Spectral phonon mean free path and thermal conductivity accumulation in defected graphene: The effects of defect type and concentration. Physical Review B, 2015, 91(22): 224301
[33]R.Y. Dong, Y. Zhou, C. Yang, B.Y. Cao*. Translational thermophoresis and rotational movement of peanut-like colloids under temperature gradient. Microfluidics and Nanofluidics, 2015, 19(4): 805-811
[34]B.Y. Cao*, R.Y. Dong. Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid. The Journal of Chemical Physics, 2014, 140: 034703
[35]R.Y. Dong, B.Y. Cao*. Anomalous orientations of a rigid carbon nanotube in a sheared fluid. Scientific Reports, 2014, 4: 6120
[36]Z.Q. Ye, B.Y. Cao*, Z.Y. Guo. High and anisotropic thermal conductivity of body-centered tetragonal C4 calculated using molecular dynamics. Carbon, 2014, 66: 567-575
[37]Y.C. Hua, B.Y. Cao*. Phonon ballistic-diffusive heat conduction in silicon nanofilms by Monte Carlo simulations. International Journal of Heat and Mass Transfer, 2014, 78: 755-759
[38]M.K. Zhang, B.Y. Cao*, et al. Numerical studies on damping of thermal waves. International Journal of Thermal Sciences, 2014, 84: 9-20
[39]B.Y. Cao*, J. Kong, et al. Polymer nanowire arrays with high thermal conductivity and superhydrophobicity fabricated by a nano-moulding technique. Heat Transfer Engineering, 2013, 34(2-3): 131-139
[40]G.J. Hu, B.Y. Cao*. Thermal resistance between crossed carbon nanotubes: Molecular dynamics simulations and analytical modeling. Journal of Applied Physics, 2013, 114: 224308
[41]B.Y. Cao*, R.Y. Dong. Nonequilibrium molecular dynamics simulation of shear viscosity by a uniform momentum source-and-sink scheme. Journal of Computational Physics, 2012, 231(16): 5306-5316
[42]B.Y. Cao, J.F. Xie, S.S. Sazhin*. Molecular dynamics study on evaporation and condensation of n-dodecane at liquid-vapour phase equilibria. The Journal of Chemical Physics, 2011, 134(16): 164309
[43]B.Y. Cao*, Y.W. Li, J. Kong, et al. High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique. Polymer, 2011, 52(8): 1711-1715
[44]B.Y. Cao*, Y.W. Li. A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics. The Journal of Chemical Physics, 2010, 133(2): 024106
[45]B.Y. Cao*, J. Sun, M. Chen, Z.Y. Guo. Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: A review. International Journal of Molecular Sciences, 2009, 10(11): 4638-4706
[46]Q.W. Hou, B.Y. Cao*, Z.Y. Guo. Thermal gradient induced actuation in double-walled carbon nanotubes. Nanotechnology, 2009, 20(49): 495503
[47]B.Y. Cao*. Nonequilibrium molecular dynamics calculation of the thermal conductivity based on an improved relaxation scheme. The Journal of Chemical Physics, 2008, 129(17): 074106
[48]B.Y. Cao, Z.Y. Guo*. Equation of motion of phonon gas and non-Fourier heat conduction. Journal of Applied Physics, 2007, 102(5): 053503
[49]B.Y. Cao*, M. Chen, Z.Y. Guo. Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation. Physical Review E, 2006, 74(6): 066311
[50]B.Y. Cao, M. Chen*, Z.Y. Guo. Temperature dependence of the tangential momentum accommodation coefficient for gases. Applied Physics Letters, 2005, 86(9): 091905.

相關詞條

熱門詞條

聯絡我們