數學研究生教材·圖論

數學研究生教材·圖論

《數學研究生教材·圖論》是2008年世界圖書出版公司出版的圖書,作者是迪斯特爾。該書是一部介紹現代圖論的簡明教程,其中包括圖論理論的最新進展,各章有習題及解答提示,以便於學生自學。

基本介紹

  • 中文名:數學研究生教材·圖論
  • 作者: 迪斯特爾
  • 出版社:世界圖書出版公司
  • 出版時間:2008年3月1日
  • 頁數:410 頁
  • 開本:16 開
  • 裝幀:平裝
  • ISBN:9787506291859
作者簡介,內容簡介,目錄,

作者簡介

作者:(德國)迪斯特爾

內容簡介

《數學研究生教材·圖論(第3版)》是Springer《數學研究生教材》(GTM)之173卷(全英文版)。

目錄

Preface
1 The Basics
1.1 Graphs
1.2 The degree of a vertex
1.3 Paths and cycles
1.4 Connectivity
1.5 Trees and forests
1.6 Bipartite graphs
1.7 Contraction and minors
1.8 Euler tours
1.9 Some linear algebra
1.10 Other notions of graphs
Exercises
Notes
2 Matching, Covering and Packing
2.1 Matching in bipartite graphs
2.2 Matching in general graphs
2.3 Packing and covering
2.4 Tree-packing and arboricity
2.5 Path covers
Exercises
Notes
3 Connectivity
3.1 2-Connected graphs and subgraphs..
3.2 The structure of 3-connected graphs
3.3 Menger's theorem
3.4 Mader's theorem
3.5 Linking pairs of vertices
Exercises
Notes
4 Planar Gr
aphs
4.1 Topological prerequisites
4.2 Plane graphs
4.3 Drawings
4.4 Planar graphs: Kuratowski's theorem.
4.5 Algebraic planarity criteria
4.6 Plane duality
Exercises
Notes
5 Colouring
5.1 Colouring maps and planar graphs
5.2 Colouring vertices
5.3 Colouring edges
5.4 List colouring
5.5 Perfect graphs
Exercises
Notes
6 Flows
6.1 Circulations
6.2 Flows in networks
6.3 Group-valued flows
6.4 k-Flows for small k
6.5 Flow-colouring duality
6.6 Tutte's flow conjectures
Exercises
Notes
7 Extremal Graph Theory
8 Infinite Graphs
9 Ramsey Theory for Graphs
10 Hamilton Cycles
11 Random Grapnhs
12 Mionors Trees and WQO

相關詞條

熱門詞條

聯絡我們