張潤楚1966年畢業於南開大學數學系並留校任教。曾長期擔任南開大學統計學系主任和數學學科學術委員會及學位評議組委員,1989至2005年間應邀訪問University of Waterloo、University of California at Berkeley、 University of Michigan和Simon Fraser University等多所國際著名大學合作研究。1993年任教授並指導博士研究生。曾任中國統計學會天津統計學會副會長,中國機率統計學會、中國現場統計研究會常務理事等職。現任教育部數學與統計學教學指導委員會委員、天津市第七屆科學技術協會委員、天津現場統計研究會理事長、國際統計雜誌“Journal of Satistical Planning and Inference”Associate Editor等學術職務。已主持了七項國家自然科學基金和兩項教育部博士點基金等科研項目。1997年獲國務院科學研究突出貢獻政府津貼,試驗設計研究成果於2001年獲教育部中國高校科學技術獎 (自然科學) 二等獎,2002年獲國家統計局全國統計科學研究優秀課題成果一等獎等科研獎勵。從2008年起並被東北師範大學聘為教授和博士生導師任職。
6. 張潤楚等譯(英譯中) (2003). 試驗設計與分析及參數最佳化 ( 原著: C.F.J. Wu and M. Hamada (2000), Experiments: Planning, Analysis and Parameter Design Optimization, John Wiley and Sons, Inc., New York), 中國統計出版社,北京, 2003.3. 出版.
7. 張潤楚等譯(英譯中) (1993). 經典位勢論與機率位勢論, (原著: J.L. Doob (1984), Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag), 科學出版社, 北京, 1993 出版.
8. 張潤楚、張樹東譯 (中譯英) (1992). Birth and Death Processes and Markov Chains (原著:王梓坤、楊向群(1980).生滅過程與馬爾科夫鏈, 科學出版社, 北京), Springer-Verlag, Berlin and Science Press, Beijing, 1992 出版.
89. Zhang, R.C., Li, P. and Wei, J.L. (2011). Optimal blocking for two-level regular designs with multi block variables, Journal of Statistical Theory and Practice, 5(1), 161-178. (SCI)
88. Li, P.F., Zhao, S.L. and Zhang, R.C. (2011). A theory on constructing designs with general minimum lower-order confounding,Statistica Sinica, (SCI)
87. Zhang, R.C., Phoa, F.K.H., Mukerjee, R. and Xu, H. (2011). A trigonometric approach to quaternary code designs with application to one-eighth and one-sixteenth fractions, The Annals of Statistics, 39 (2), 931-955. (SCI)
86. Hu, J.W. and Zhang, R.C. (2011). Some results on two-level regular designs with general minimum lower order confounding, Journal of Statistical Planning and Inference, doi:10.1016/j.jspi.2010.11.027. (SCI)
2010
85. Zou, C.L., Liu, Y.K., Wang, Z.J. and Zhang, R.C. (2010). Adaptive Nonparametric Comparison of Regression Curves, Communications in Statistics: Theory and Method, 39, 1299-1320.
84. Cheng, Y. and Zhang, R.C. (2010). On construction of general minimum lower order confounding designs with N/4+1≤n≤9N/32, Journal of Statistical Planning and Inference, 140, 2384-2394. (SCI)
83. Wei, J.L., Yang, J.F., Li, P. and Zhang, R.C. (2010). Split-plot designs with general minimum lower-order confounding, Science in China, Series A-Mathematics, 53(4), 939-952. (SCI)
82. Li, P., Zhao, S.L. and Zhang, R.C. (2010). A cluster analysis selection strategy for supersaturated designs, Computational Statistics and Data Analysis, 54, 1605-1612. (SCI)
81. Zhang, R.C. and Cheng Y. (2010). General minimum lower order confounding designs: An overview and a construction theory, Journal of Statistical Planning and Inference, 140, 1719-1730. (SCI)
80. Xu, J.J., Tan, X.M. and Zhang, R.C. (2010). A note on Phllips (1991): “A constrained maximum likelihood approach to estimating switching regressions”, Journal of Economitrics, 154, 35-41. (SCI)
79. Zhao, S.L. and Zhang, R.C. (2010). Compromise plans with clear two-factor interactions, Acta Mathematicae Applicatae Sinica, English Series, 26, 99-106. (SCI)
2009
78. Yang, J.F., Liu,M.Q. and Zhang R.C. (2009). Some results on fractional factorial split-plot designs with multi-level factors, Communications in Statistics-Theory and Methods, 38, 3623-3633. (SCI)
77. Hu, J.W. and Zhang, R.C. (2009). Maximal rank minimum aberration and doubling, Statistics & Probability Letters, 79, 915-919. (SCI)
76. Zhang, R.C. and Mukerjee, R. (2009). General minimum lower order confounding in block designs using complementary sets. Statistica Sinica, 19, 1787-1802. (SCI)
75.Zhang, R.C. and Mukerjee, R. (2009). Characterization of general minimum lower order confounding via complementary sets, Statistica Sinica, 19, 363-375. (SCI)
2008
74. Zhao, S.L. and Zhang, R.C. (2008). Bound on the maximum number of clear two-factor interactions for designs, Acta Mathematica Scientia, 28B(4), 949-954. (SCI)
73. Liu Y.K., Zou, C.L. and Zhang, R.C. (2008). Empirical likelihood ratio test for a change-point in linear regression model, Communications in Statistics-Theory and Methods, 37, 2551-2563. (SCI)
72. Zhang, R.C., Li, P. Zhao, S.L. and Ai, M.Y. (2008). A general minimum lower-order confounding criterion for two-level regular designs, Statistica Sinica, 18, 1689-1705. (SCI)
71. Chen, J., Tan, X.M. and Zhang, R.C. (2008). Inference for normal mixture in mean and variance, Statistica Sinica, 18, 443-465. (SCI)
70. Liu, Y.K., Zou, C.L. and Zhang, R.C. (2008). Empirical likelihood for the two-sample mean problem, Statistics & Probability Letters, 78(5), 548-556. (SCI)
69. Zhao, S.L. and Zhang, R.C. (2008). designs with resolution III or IV containing clear two-factor interaction components, Statistical Papers, 49, 441-454. (SCI).
68. Zhao, S.L. Zhang, R.C. and Liu, M.Q. (2008). Some results on designs with two-factor interaction components, Science in China, Series A-Mathematics, 51(7), 1297-1314. (SCI).
67. Tan, X. M., Chen, J. H. and Zhang, R. C., (2007). Consistency of constrained maximum likelihood estimator in finite normal mixture models. 2007 Proceedings of the American Statistical Association, Section on Statistical Education [CD-ROM]}, Alexandria, VA: American Statistical Association, 2113-2119. (SCI)
66. Zhao, S.L. and Zhang, R.C. (2007). Bound on the Maximum number of clear two- factor interactions for designs, Mathematica Acta Scientia, 27B(3), 1-6. (SCI)
65. Yang, G.J., Lin L. and Zhang, R.C. (2007). Unbiased quasi regressions, Chinese Annals of Mathematics, 28B(2), 177-186. (SCI)
64. Yang, J.F., Zhang, R.C. and Liu, M.Q. (2007). Construction of fractional factorial split-plot designs with weak minimum aberration, Statistics & Probability Letters, 77, 1567-1573. (SCI)
63. Li, P.F., Liu, M.Q. and Zhang, R.C. (2007). designs with minimum aberration or weak minimum aberration, Statistical Papers, 48, 235-248. (SCI)
62. Liu, Y.K., Liu, M.Q. and Zhang, R.C. (2007). Construction of multi-level supersaturated design via Kronecker product, Journal of Statistical Planning and Inference, 137, 2984-2992. (SCI)
60. Wu, C.C. and Zhang, R.C. (2007), The asymptotic distributions of empirical likelihood ratio statistics in the presence of measurement error, Mathematica Acta Scientia, 27B(2), 232-242. (SCI)
2006
59. Zhang, Q.Z., Zhang, R.C. and Liu, M.Q. (2006). A method for screening active effects in supersaturated designs, Journal of Statistical Planning and Inference,137, 2068-2079. (SCI)
58. Li, P.F., Chen, B.J., Liu, M.Q. and Zhang, R.C. (2006). A note on minimum aberration and clear criteria, Statistics & Probability Letters, 76, 1007-1011. (SCI)
57. Yang, G.J. Liu, M.Q and Zhang, R.C. (2006). A note on 2^{m-p}_{IV} designs with the maximum number of clear two-factor interactions, Mathematica Acta Scientia, 26A(7), 1153-1158.
56. Chen, B.J., Li, P.F., Liu, M.Q. and Zhang, R.C. (2006). Some results on blocked regular 2-level fractional factorial designs with clear effects. Journal of Statistical Planning and Inference, 136, 4436-4449. (SCI)
55. Wu, C.C. and Zhang, R.C. (2006). Empirical likelihood method under stratified random sampling using auxiliary information and the information in the strata population size, Chinese Journal of Applied Probability and Statistics, 22(4), 401-409.
53. Zi, X.M., Zhang, R.C. and Liu, M.Q. (2006). Bounds on the maximum numbers of clear two-factor interactions for fractional factorial split-plot designs, Science in China Series A-Mathematics, 49(1), 1816-1829. (SCI)
52. Yang, J.F., Li, P.F., Liu, M.Q., and Zhang R.C. (2006), fractional factorial split-plot designs containing clear effects, Journal of Statistical Planning and Inference, 136, 4450-4458. (SCI)
51. Wu, C.C. and Zhang, R.C. (2006), An information-theoretic approach to the effective usage of auxiliary information from survey data, Annals of the Institute of Statistical Mathematics, 58, 499-509. (SCI)
50. Ai, M.Y., Yang, G.J. and Zhang, R.C. (2006). Minimum aberration blocking of regular mixed factorial designs, Journal of Statistical Planning and Inference, 136(4), 1439- 1511. (SCI)
49. Ai, M.Y. and Zhang, R.C. (2006). Minimum secondary abberation fractional factorial split-plot designs in terms of consulting designs, Science in China, Series A-Mathematics, 49 (4), 494-512. (SCI)
48. Wu, C.C. and Zhang, R.C. (2005). Empirical likelihood inferences on parameters of interest under stratified random sampling in the presence of measurement error. Acta Mathematicae Applicatae Sinica, English Series, 21(3), 429-440. (SCI)
47. Ai, M.Y., Li, P.F. and Zhang, R.C. (2005). Optimal criteria and equivalence for nonregular fractional factorial designs. Matrika, 62(1), 73-83. (SCI)
46. Li, P.F., Liu, M.Q. and Zhang, R.C. (2005). Choice of optimal initial designs in sequential experiments, Metrika, 61, 127-135. (SCI)
45. Yang, G.J., Liu, M.Q. and Zhang, R.C. (2005). Weak minimum aberration and maximum number of clear two-factor interactions in designs, Science in China, Series A-Mathematics, 48(11), 1479-1487. (SCI)
44. Ai, M.Y. and Zhang, R.C. (2005). Characterization of minimum aberration mixed factorials in terms of consulting designs. Statistical Papers, 46(2), 157-171. (SCI)
2003-2004
43. Tan, X.M. and Zhang, R.C. (2004). Genaralized likelihood-ratio test of the number of components in finit mixture models (Chen 1994, Lemma 1): correction, The Canadian Journal of Statistics, 32(4), 469-. (SCI)
42. Ai, M.Y. and Zhang, R.C. (2004). Theory of optimal blocking of nonregular factorial designs. The Canadian Journal of Statistics, 32, 57-72. (SCI)
41. Ai, M.Y. and Zhang, R.C. (2004). designs containing clear main effects or clear two-factor interactions. Statistics & Probability Letters, 69, 151-160. (SCI)
40. Ai, M.Y. and Zhang, R.C. (2004). Multistratum fractional factorial split-plot designs with minimum aberration and maximum estimation capacity. Statistics & Probability Letters, 69, 161-170. (SCI)
39. Ai, M.Y. and Zhang, R.C. (2004). Theory of minimum aberration blocked regular mixed factorial designs. Journal of Statistical Planning and Inference , 126, 305-323. (SCI)
38. Ai, M.Y. and Zhang, R.C. (2004). Projection justification of generalized minimum aberration for asymmetrical fractional factorial designs. Metrika, 60, 279-285. (SCI)
37. Lin, L. and Zhang, R.C. (2004). Bootstrap wavelet in the nonparametric regression model with weakly dependent processes, Mathematica Acta Scientia, 24B, 61-70. (SCI)
36. Li, P.F., Liu, M.Q. and Zhang, R.C. (2004). Some theory and the construction of mixed-level supersaturated designs, Statistics & Probability Letters, 69, 105-116. (SCI)
26. Liu, M.Q. and Zhang, R.C. (2000). Construction of Optimal Supersaturated Designs Using Cyclic BIBDs, Journal of Statistical Planning and Inference, 91(1), 139-150. (SCI)
25. Zhang, R.C. and Park, D.K. (2000). Optimal Blocking of Two-Level Fractional Factorial Designs, Journal of Statistical Planning and Inference, 91(1), 107-121. (SCI)
14. Wang, Z.J. and Zhang, R.C. (1996). A Sufficient and Necessary Condition of Existence of Orthogonal Arrays Debarring Some Combinations, Science Bulletin, 41 (12), 973-975.
12. Zhang, R.C. (1996). On a Transformation Method in Constructing Multivariate Uniform Designs, Statistica Sinica, 6(2), 455-469. (SCI).
1994-1995
11. Zhang, R.C. and Wang, Z.J. (1995). Construction of Orthogonal Arrays Debarring Some Factor-Level Combinations, Bulletin of the International Statistical Institute, 50th Session, Book 2, 1267-1268.
10. Zhang, R.C. and Shao, Q. (1995). On Minimum Aberration Designs, Bulletin of the International Statistical Institute, 50th Session, Book 2, 1083-1084.
9. Zhang, R.C. and Wang, Z.J. (1994). Uniform Design Sampling and Its Fine Properties, The Fifth Japan-China Symposium on Statistics, Okayama University of Science, University Education Press, 343-346.
7. Wu, C.F.J. and Zhang, R.C. (1993). Minimum Aberration Designs with Two-level and Four-level Factors, Biometrika, 80 (1), 203-209. (SCI)
6. Wu, C.F.J., Zhang, R.C. and Wang, R.G. (1992). Construction of Asymmetrical Orthogonal Arrays of the Type , Statistica Sinica, 2 (1), 203-220. (SCI)
3. Zhang, R.C. (1985). Markov Properties of the Generalized Brownian Sheet and Extended OUP_2, Scientia Sinica, Series A-Mathematics, 28 (8), 814-825. (SCI).