康司坦丁,男,博士,教授,現就職於華東師範大學精密光譜科學與技術國家重點實驗室。
基本介紹
- 中文名:康司坦丁
- 畢業院校:德州 A 和 M 大學
- 學位/學歷:博士
- 職業:教師
- 專業方向:量子光學理論和光譜組
- 任職院校:華東師範大學精密光譜科學與技術國家重點實驗室
個人經歷,工作經歷,教育經歷,研究方向,學術成果,
個人經歷
工作經歷
2017至今, 華東師範大學精密光譜學國家重點實驗室教授, 中國上海。
2015至今, 加州大學歐文分校化學與物理與天文學系客座教授。
2015–2017科學家, 精密測量組, 新加坡製造技術研究所, 科學, 技術和研究機構 A * 星, 新加坡。
2012–2015高級研究科學家/博士後學者, 加利福尼亞大學 (與 Shaul 教授 Mukamel), 歐文, CA。
2010–2012博士後研究員, 德克薩斯 A 和 M 大學 (與 Marlan 教授), 大學駐地, 德克薩斯州。
2010–2012訪問博士後科學家, 普林斯頓大學 (與 Marlan 教授), 普林斯頓, 新澤西州。
教育經歷
2006-2009, 德州 A 和 M 大學物理博士, GPA-4.0。專業在原子, 分子物理和光學;
2002-2006 下諾夫哥羅德哥羅德州立大學物理學士學位。專業的相對論電子學和太赫茲物理。
研究方向
量子光學理論和光譜組
1.對於複雜量子光場的研究
非線性光信號通常是用半經典的方法來計算,即假定量子系統與經典場相互作用。更有效的方法往往是用來“對於分子或半導體納米結構的多維信號”的設計和解釋。光的量子態給量子信息的處理提供了一個重要的工具,以及可靠的通訊和平版印刷。經典的光從根本上被時間頻率的不確定性給限制住了,量子的光卻沒有。舉個例子,糾纏態光子就有完全獨立的時間和光譜特性,並且不受不確定性的制約。並且對於多光子過程的低強度要求使得它很理想地適用於在成像套用方面把損失降到最低。近期我們研製了一種技術,利用場的量子特性套用於分光鏡的套用方面,並且可以分辨出物質的量子路徑。現代量子技術利用量子場但通常用的是非常簡單的物質模型(量子比特)我們研發了一種圖表化的方法可以處理複雜的場與分之的相互作用的過程。不像半經典形式那樣用麥克斯韋方程組來處理巨觀信號模型,我們的方法是把整個過程用完全微觀的計算來研究。
利用以上的形式我們規定了一種全新的脈衝推遲掃描協定,它是基於含有合適糾纏態光的多維光譜學的迴路圖來制定的,它提供了一種對於各種共振的高選擇性的無背景測量的方法。我們又進一步利用糾纏態的光子來研究在一些複雜的生物分子如光合作用中心的分子,它們的激子的分布和動力學的量子控制。我們最近提出了一種微觀理論,對於糾纏的產生(通過參量變換)和量子控制所遵從的光學或信息的協定,協定中包括水浴漲落。最後,我們把帶有HBT效應的干涉測量法融入到光譜學中,以此來著重增強拉曼信號的解析度和可選擇性。糾纏光子源和超快光學裝置的出現表明量子光的光譜學是目前物理學裡的一個新興領域,在這當中理論物理學家通過預測和引出新的實驗來做出一個顯著的貢獻。
2.電池、雷射和生物學中的非線性回響和量子漲落。
在小系統的熱力學特性中我們可以觀察到各種量子效應,我們研究了量子相干和量子相互作用對於量子熱機的穩定的和不穩定的狀態中所起的作用,這種量子熱機諸如雷射器、光伏電池或光合作用的反應處。我們運用了一種與等離子設備相同的概念,我們已經證明量子熱機可以把不相干的熱能轉化為諧振腔光子,它的最大能量可以通過控制量子相干來增強。我們還證明出了不管人工(如太陽能電池)還是自然(如光合作用)捕獲光的相干性會影響同樣的由流(如聲子)所誘導的群體一致性的耦合項,在這種過程中並不需要相干光源,它是用來在太陽光刺激這種自然條件下為非相干激發而服務的。回收光複合物中的電荷分離會出現在細菌或植物里的一對緊密結合的葉綠素(一種特別的配對中)。我們證實了不論是群體振盪抑或是提高輸出都基於一個共同的根源並且很有可能在典型參數方面二者同時具有。因此,對於量子相干的微觀起源和量子相干在能量以及電荷轉換過程以及微小系統的熱力學特性中所起的作用,對於這些的理解於是乎就成為了AMO物理里的一個關鍵問題。我們進一步證明了量子相干是如何影響一般的量子熱機的最大能特性的效率的。它對於研發新的光譜工具、給轉運過程提供新的模型、設計有更高效性能的新光源這三個方面有更好的貢獻提供了很好的契機。
3.相干多維拉曼光譜學
激發態的分子的動力學在光物理過程中有著非常重要的作用,並且已經吸引了相當多的實驗或者理論物理學家的關注。關於在複雜反應中原子重新組合的實時結構信息可以由時間分辨振動光譜學直接導出。通常在可見光或者紫外光中的一個極短的雷射脈衝可以把分子激發到()的激發態,從而引發光反應或者非絕熱衰減的過程。這種振盪的力可以由自發的或者受激的拉曼反映探測到。我們發現了導致這種現象的時間的和光譜的解的微觀根源,研製了針對一些突出的零差或者外差檢測的最佳方法。以及實現時域或者頻域拉曼技術的方法。我們套用了三種仿真協定,這三種協定在多模核動力複雜性方面以及構成分成近似方面會有不同的變化。這些仿真協定的使用能進一步擴大到對於運動電荷的研究,以及從自然光到“電子從蛋白質到新物質的轉移”中所產生了人工捕獲光的套用。那些套用一組阿秒X射線雷射脈衝的實驗給分子價電子結構和比可見光更高解析度的動力學研究打開了一扇新的大門。我們研究了由電子激發的時間演化疊加所造成的非線性光散射(NLS)的微觀成因。我們進一步利用量子電動力學框架,確定了一種來自單一胺基酸分子(半胱氨酸)的X光衍射信號的可測量信息。我們還證明了實現在分子中通過阿秒拉曼脈衝序列產生相干控制電子轉移的可能性。又進一步研製了一種新的光譜技術,針對“電子相干的錐形交叉檢測”的無背景追蹤。我們的理論和模擬能指導未來的對於納米粒子和蛋白質結構試驗研究。
學術成果
出版物:
2018
51.P. Wei, M.Qin, K.E. Dorfman, X. Yuan1, C. Liu, Z. Zeng, X. Ge, X. Zhu, Q. Liang, B. Yao, Q. Wang, H. Li, J. Liu, Y. Zhang, S.Y. Jeong, G.S. Yun, D.E. Kim, P. Lu, and R. Li, "Probing electron-atom collision dynamics in gas plasma by high-order harmonic spectroscopy", Optics Letters 43, 1970 (2018)
50.K.E. Dorfman, D. Xu, J. Cao, "Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence", Phys. Rev. E, 97, 042120 (2018).
49.Z. Zhang, P. Saurabh, K.E. Dorfman, A. Debnath, and S. Mukamel, “Monitoring
polariton dynamics in the LHCII photosynthetic antenna in a microcavity by twophoton
coincidence counting”, J. Chem. Phys. 117, 074302 (2018).
48. K.E. Dorfman and S. Mukamel,“Multidimensional photon correlation spectroscopy
of cavity polaritons”, PNAS 115, 1451 (2018).
2017
47. M. Kowalewski, B.P. Fingerhut, K.E.Dorfman, K. Bennett, and S. Mukamel,
“Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular
Processes: From the Infrared to the X-ray Regime”, Chemical Reviews, 117, 12165(2017).
2016
46. K.E. Dorfman, Yu Zhang, and S. Mukamel, “Coherent Control of Long-range
Photoinduced Electron Transfer by Stimulated X-ray Raman Processes”, PNAS,
113, 10001 (2016).
45. K.E. Dorfman, F. Schlawin, and S. Mukamel, “Nonlinear optical signals and spectroscopy
with quantum light”, accepted to Review of Modern Physics, 88, 045008
(2016).
44. K.E. Dorfman, S. Mukamel, “Time-and-frequency gated photon coincidence countingl
a novel multidimensional spectroscopy tool”, arXiv:1602.03241, Phys. Scr. 91,
083004 (2016). The article has been selected for the cover of Phys. Scr.
43. G. Fumero, G. Batignani, K.E. Dorfman, S. Mukamel, and T. Scopigno, “Probing
ultrafast processes by fifth order Stimulated Raman Scattering”, J. Phys.: Conf.
Ser. 689, 012023 (2016).
42. F. Schlawin, K.E. Dorfman, and S. Mukamel, “Pump-probe spectroscopy using
quantum light with two-photon coincidence detection”, Phys. Rev. A 93, 023807
(2016).
2015
41. G. Fumero, G. Batignani, K.E. Dorfman, S. Mukamel, and T. Scopigno, “On the
Resolution Limit of Femtosecond Stimulated Raman Spectroscopy: Modelling Fifth-
Order Signals with Overlapping Pulses”, Chem. Phys. Chem. 16, 3533 (2015).
40. M. Kowalewski, K. Bennett, K.E. Dorfman, and S. Mukamel, “Catching conical
intersections in the act: Monitoring transient electronic coherences by attosecond
stimulated X-ray Raman signals”, arXiv:1510.02997v1 [physics.chem-ph], Phys. Rev.
Lett. 115, 193003 (2015).
39. K.E. Dorfman, K. Bennett, and S. Mukamel, “Detecting electronic coherence by
multidimensional broadband stimulated X-ray Raman signals”, arXiv:1506.08226
[physics.chem-ph], Phys. Rev. A 92, 023826 (2015).
38. S. Mukamel, and K.E. Dorfman, “Nonlinear fluctuations and dissipation in matter
revealed by quantum light”, arXiv:1505.00894 [quant-ph], Phys. Rev. A 91, 053844
(2015).
37. B.K. Agarwalla, K.E. Dorfman, and S. Mukamel, “Evaluation of optical probe signals
from nonequilibrium systems”, arXiv:1503.08252 [quant-ph], Phys. Rev. A 91,
052501 (2015).
36. R. Glenn, K. Bennett, K.E. Dorfman, and S. Mukamel “Photon-Exchange Induces
Optical Nonlinearities in Harmonic Systems”, J. Phys. B: At. Mol. Opt. Phys. 48,
065401 (2015).
35. B.K. Agarwalla, H. Ando, K.E. Dorfman, and S. Mukamel, “Stochastic Liouville
equations for impulsive transient absorption and stimulated Raman spectroscopy”,
arXiv:1503.08387 [quant-ph], J. Chem. Phys. 142, 024115 (2015).
2014
34. Y. Zhang, J.D. Biggs, W. Hua, K.E. Dorfman, and S. Mukamel, “Three-Dimensional
Attosecond Resonant Stimulated X-Ray Raman Spectroscopy of Electronic Excitations
in Core-ionized Glycine”, Phys. Chem. Chem. Phys. 16, 24323 (2014).
33. H. Ando, B.P. Fingerhut, K.E. Dorfman, J.D. Biggs, and S. Mukamel “Femtosecond
stimulated Raman spectroscopy of the cyclobutane thymine dimer repair mechanism:
A computational study”, J. Am. Chem. Soc. 136, 14801 (2014).
32. K.E. Dorfman, F. Schlawin, and S. Mukamel “Stimulated Raman Spectroscopy with
Entangled Light: Enhanced Resolution and Pathway Selection”, arXiv:1407.3332
[quant-ph], The J. Phys. Chem. Lett. 5, 2843 (2014).
31. K. Bennett, J. D. Biggs, Y. Zhang, K.E. Dorfman, and S. Mukamel “Time-,
Frequency-, and Wavevector-Resolved X-Ray Diffraction from Single Molecules”,
arXiv:1405.4039 [physics.chem-ph], J. Chem. Phys. 140, 204311 (2014).
30. K.E.Dorfman, and S. Mukamel “Multidimensional spectroscopy with entangled light;
loop vs ladder delay scanning protocols”, arXiv: 1402.0496 [quant-ph], New Journal
of Physics 16, 033013 (2014)
29. K.E. Dorfman, and S. Mukamel “Indistinguishability and correlations of photons
generated by quantum emitters undergoing spectral diffusion”, Scientific Reports 4,
3996 (2014).
28. B.P. Fingerhut, K.E. Dorfman, and S. Mukamel “Probing the Conical Intersection
Dynamics of the RNA Base Uracil by UV-Pump Stimulated-Raman-Probe Signals;
Ab-Initio Simulations”, J. Chem. Theory Comput. 10, 1172 (2014).
2013
27. K.E. Dorfman, B.P. Fingerhut, and S. Mukamel “Time-resolved broadband Raman
spectroscopies: A unified six-wave-mixing representation”, arXiv: 1305.5291[quantph],
J. Chem. Phys. 139, 124113 (2013).
26. K.E. Dorfman, P.K. Jha, D.V. Voronine, P. Genevet, F. Capasso, and M.O. Scully
“Quantum-Coherence-Enhanced Surface Plasmon Amplification by Stimulated Emission
of Radiation”, arXiv:1212.5237v2 [quant-ph], Physical Review Letters 111,
043601 (2013).
25. K.E. Dorfman, B.P. Fingerhut, and S. Mukamel “Broadband infrared and Raman
probes of excited-state vibrational molecular dynamics; Simulation protocols based
on loop diagrams”, arXiv: 1305.5291[quant-ph], Phys. Chem. Chem. Phys. 15,
12348 (2013).
24. K.E. Dorfman and S. Mukamel “Collective resonances in(3); a QED study”,
arXiv:1305.6994[quant-ph], Phys. Rev. A 87, 063831 (2013).
23. B.P. Fingerhut, K.E. Dorfman, and S. Mukamel “Monitoring Nonadiabatic Dynamics
of the RNA Base Uracil by UV Pump-IR Probe Spectroscopy”, The J. Phys. Chem.
Lett. 4, 1933 (2013).
22. K.E. Dorfman, K. Bennet, Y. Zhang, and S. Mukamel “Nonlinear light scattering
in molecules induced by impulsive X-ray Raman processes”, arXiv:1303.3550v2
[quant-ph], Phys. Rev. A 87, 053826 (2013).
21. F. Schlawin, K.E. Dorfman, B. Fingerhut, and S. Mukamel “Suppression of population
transport and control of exciton distributions in photosynthetic complexes by
entangled photons”, Nature Communications 4, 1782 (2013).
20. K.E. Dorfman, A.A. Svidzinsky and M.O. Scully “Increasing photovoltaic power
by noise induced coherence between intermediate band states”, Coherent Optical
Phenomena 1, pp. 42-49 (2013).
19. K.E. Dorfman, D.V. Voronine, S. Mukamel, and M.O. Scully “Photosynthetic
reaction center as a quantum heat engine”, PNAS, 110, 2746 (2013). The article
has been featured inPhysOrg News. See thecommentary articleby Peter
Nalbach and Michael Thorwart.
2012
18. A.A. Svidzinsky, K.E. Dorfman, and M.O. Scully, “Enhancing photocell power by
Fano induced coherence”, Coherent Optical Phenomena, 1, pp. 7-24 (2012).
17. K.E. Dorfman and S. Mukamel “Nonlinear spectroscopy with time- and frequencygated
photon counting; A superoperator diagrammatic approach”, Phys. Rev. A
86, 013810 (2012).
16. F. Schlawin, K.E. Dorfman, B. Fingerhut, and S. Mukamel “Manipulating twophoton
fluorescence spectra of chromophore aggregates with entangled photons: A
simulation study”, arXiv:1204.4490v1 [quant-ph]. Phys. Rev. A 86, 023851 (2012).
15. K.E. Dorfman and S. Mukamel “Photon counting in parametric down-conversion:
Interference of field-matter quantum pathways”, Phys. Rev. A 86, 023805 (2012).
14. P.K. Jha, K.E. Dorfman, Z. Yi, L. Yuan, V. Sautenkov, Y.V. Rostovtsev,
G.R. Welch, A.M. Zheltikov, and M.O. Scully, “Ultralow-power local laser
control of the dimer density in alkali-metal vapors through photodesorption”,
arXiv:1112.4115v1[physics.atom-ph], Applied Physics Letters, 101, 091107 (2012).
13. L. Yuan, K.E. Dorfman, A.M. Zheltikov, and M.O. Scully, “Plasma Assisted Coherent
Backscattering for Stand-off Spectroscopy”, Optics Letters 37, pp. 987-989 (2012).
2011
12. K.E. Dorfman, A.A. Svidzinsky, and M.O. Scully “Increasing Photocell Power by
Quantum Coherence Induced by External Source”, Phys. Rev. A 84, 053829 (2011).
11. A.A. Svidzinsky, K.E. Dorfman, and M.O. Scully, “Increasing photovoltaic power by
Fano induced coherence”, Phys. Rev. A 84, 053818 (2011).
10. E. Sete, K.E. Dorfman, and J.P. Dowling, “Phase-controlled entanglement in a
quantum-beat laser: application to quantum lithography”, J. Phys. B: At. Mol.
Opt. Phys. 44, 225504 (2011). The article has been selected for the cover of
J. Phys. B.
9. K.E. Dorfman, P.K. Jha, and S. Das, “Quantum-interference-controlled
resonance profiles from lasing without inversion to photo-detection”,
arXiv:1108.1567v1[physics.atom-ph], Phys. Rev. A 84, 053803 (2011).
8. M.O. Scully, K. Chapin, K.E. Dorfman, M. Kim, and A.A. Svidzinsky, “Quantum
Heat Engine Power Can be Increased by Noise Induced Coherence”, PNAS 108, pp.
15097-15100, (2011).The article has been featured inScienceNews.
7. L. Yuan, A.A. Lanin, P.K. Jha, A.J. Traverso, D.V. Voronine, K.E. Dorfman, A.B.
Fedotov, G.R. Welch, A.V. Sokolov, A.M. Zheltikov, and M.O. Scully, “Coherent
Raman Umklappscattering”, Laser Physics Letters,8, pp. 736-741, (2011).
6. K.E. Dorfman, M. Kim, and A.A. Svidzinsky, “Canonical statistics and thermodynamics
of weakly interacting Bose gas: Recursion relation approach”, Phys. Rev. A
83, 033609, (2011).
2009
5. K.E. Dorfman, “Modern problems in statistical physics of Bose-Einstein Condensation
and in electrodynamics of Free Electron Lasers”, Ph.D. thesis, Texas A&M
University, USA, (2009).
4. V.V. Kocharovsky, Vl.V. Kocharovsky, and K.E. Dorfman. “Origin and universal
structure of non-Gaussian statistics of Bose-Einstein condensate in a mesoscopic
perfect gas”, Radiophys. Quantum Electronics, vol.52, pp. 422-434, (2009).
3. K.E. Dorfman, N.S. Ginzburg, A.M. Malkin, and A.S. Sergeev. “FEL amplifiers
based on planar Bragg waveguides”, PJTPh, No. 12, vol.35, pp. 9-17, (2009).
2007
2. K.E. Dorfman, N.S. Ginzburg, A.M. Malkin, and A.S. Sergeev. “Open Planar Bragg
Waveguides for Mode Selection in Quantum and Classical Amplifiers”, Laser Physics,
No. 5, vol.17, pp. 665-671, (2007).
1. V.R. Baryshev, K.E. Dorfman, N.S. Ginzburg, A.M. Malkin, N.Yu. Peskov, R.M.
Rozental, A.S. Sergeev, and V.Yu. Zaslavsky. “The use of planar Bragg structures
for generation and amplification of coherent radiation from spatially-extended
active media”, Izvestiya VUZ: Prikladnaya Nelineynaya Dinamika(Applied Nonlinear
Dynamics), vol.14, pp. 43-70, (2006), ISSN 0869-6632.
Selected Conference Proceedings
4. F. Schlawin, K.E. Dorfman, B.F. Fingerhut, and S. Mukamel. “Nonlinear Spectroscopy
of Chromophore Aggregates with Entangled Photon Pulses”, Proc. of the
XVIIIth International Conference on Ultrafast Phenomena In Ultrafast Phenomena
XVI, Editors, M. Chergui, S. Cundiff, E. Riedle and R. Schoenlein,(Springer-Verlag,
Berlin), 41, 12006 (2013).
3. K. Dorfman, K. Chapin, A. Svidzinsky, and M. Scully, “On Quantum Coherence
Effects in Photo and Solar Cells”, arXiv: 1012.5321.v2[physics.atom-ph] (2010).
Later revised version published as “Quantum Thermodynamics of Photo and Solar
Cells”, Second Law of Thermodynamics: Status and Challenges, AIP Conf. Proc.,
pp. 256-264 (2011).
2. K.E. Dorfman, N.S. Ginzburg, A.M. Malkin, and R.M. Rozental. “Selective properties
of a planar Bragg waveguide”, Proc. of Joint 31st International Conference on
Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics,
p. 403, Shanghai, China, September 18-22 (2006).
1. K.E. Dorfman, N.S. Ginzburg, A.M. Malkin, and R.M. Rozental. “A FEL amplifier
based on planar Bragg waveguides”, Proc. of 28th International Free Electron Laser
Conference (FEL 2006), pp. 393-396, Berlin, Germany, Aug 27 - Sep 1 (2006).