有機物分子中的兩種化學結構鍵。椅式構象的直立鍵和平伏鍵能發生相互轉變的概念,對預測取代環己烷的優勢構象極為重要。例如,一元取代環己烷中的R基,由於兩種椅式構象的相互轉變,可以處在直立鍵上,也可以處在平伏鍵上。
基本介紹
- 中文名:平伏鍵
- 外文名:equatorial bond
- 屬性:鍵
- 發現時間:1943年
- 發現者:挪威化學家哈塞爾
- 相關概念:直立鍵
基本概念,相關概念,構型和構象,順反異構,對映異構,構象和構象分析,分子內張力,丁烷的構象,環己烷構象,構象對化學反應速度的影響,構象對分子物化性質的影響,
基本概念
如圖一,在其中三個伸向環上方,三個伸向環下方,這六個C-H鍵稱為直立鍵,或稱a鍵。另有六個C-H鍵則伸向環外,大體上與環的平面相平行(圖1,用虛線表示者),其中三個略向上,三個略向下,這六個C-H鍵稱為平伏鍵,或稱e鍵。
在室溫下椅式構象可以極快的速率從一種椅式構象轉變為另一種椅式構象,最後達成兩種椅式構象之間的動態平衡。在發生這種轉變時,一種椅式構象的直立鍵則隨著轉變成另一種椅式構象的平伏鍵,而平伏鍵則轉變成直立鍵(如圖2)。
椅式構象的直立鍵和平伏鍵能發生相互轉變的概念,對預測取代環己烷的優勢構象極為重要。例如,一元取代環己烷中的R基,由於兩種椅式構象的相互轉變,可以處在直立鍵上,也可以處在平伏鍵上。通常,以處在平伏鍵上的構象較為穩定,占優勢。這種構象稱為e鍵型;反之稱為a鍵型(圖3)。
通過紐曼投影式可以看到,a鍵型的取代基R與碳架處於鄰位交叉式的位置上,而e鍵型的則處於對位交叉式的位置上並伸向環外,所以在一般情況下一元取代環己烷的e鍵型構象較a鍵型穩定而占優勢。
相關概念
構型和構象
構型(configuration)指分子內原子或基團在空間“固定”排列關係,分為:順反異構,旋光異構二種。
構象(conformation)指圍繞單鍵旋轉產生的不同的分子形象。
構型和構象在有機合成、天然產物、生物化學等研究領域非常重要。例如六六六有九種順反異構體,其中只有γ-異構體具有殺蟲活性。人體需要多種胺基酸,其中只有L-型具有活性作用。手性(chiral)在醫藥、農藥、食品添加劑、香料等領域需求越來越多。手性液晶材料、手性高分子材料具有獨特的理化性能,成為特殊的器件材料。一個新興的高新技術產業-手性技術(chirotechnology)正在悄然興起。
順反異構
由於雙鍵或環的存在,使得旋轉發生困難,而引起的異構現象。命名:順、反 (Cis,Syn-;Trans, Anti)。 現在用 “Z”, “E”表示。
Z:Zusammen 二個大的基團都在一側(相當於順) E:Entgegen 二個大的基團分在兩側 (相當於反)
關於C=N和N=N雙鍵的命名:含C=N雙鍵的化合物主要是指醛肟和酮肟(醛或酮與羥胺NH2OH反應得到)孤對電子的序數為“0”。文獻上,現在還沿用順、反命名。把-OH,-H在一側的叫順式,Cis-,Syn-;把-OH,-H在兩側的叫反式,Trans-,Anti-。
N=N雙鍵也用順反命名:一般反式穩定,減少了基團間的排斥作用。反式對稱性好,分子排列更為緊密、有序,有較高的熔點,較低的溶解度(在水中,因極性小),燃燒熱、氫化熱比順式低。對於環狀化合物仍用順反而不用E、Z,把環看成是一個平面的,取代基團在同一側的為順式。 如果有三個以上時,選一個參考基,用小寫r(reference group)表示,再和別的取代基比較與之關係。
對映異構
手性分子(chiral molecule)、手性碳,從上世紀七十年代起廣泛使用,能夠使平面偏振光向左或向右旋的物質稱為旋光性物質(或光活性物質)。手性分子是指一個分子與其鏡象不能重合。 手性分子一定是光活性物質。
對映異構體:二個互為鏡象,但不能重合,是二種不同化合物。旋光能力相同,但方向相反,如同左、右手。考察一個分子是否為手性分子,可以從有無手性碳出發,但是最根本是要看分子對稱性來考察。
符合手性分子的充要條件:①無對稱面; ②無對稱中心; ③無交換對稱軸。
三者不可缺一,但一般說來,只要求分子是否有對稱面或對稱中心即可了。(注意:對稱軸不能作為判據。)
構象和構象分析
構象:沿C-C單鍵旋轉,分子產生不同形象,稱為構象。單鍵旋轉能壘一般為3~10千卡/摩爾,在室溫下熱運動可以越過此能壘,各種構象迅速互變,分子在某一構象停留時間很短(﹤10-6秒),因此不可能將某一個構象分離出來。
研究構象對於了解化合物結構、反應歷程和反應取向等方面非常重要。 許多分子呈現有張力,就是由於非理想幾何形狀造成的。分子將儘可能利用鍵角或鍵長的改變使能量達到最低值,就是說一個分子總是要採取使其能量為最低的幾何形狀。
分子內張力
空間張力=成鍵張力(單鍵伸長或縮短)+鍵角張力+扭轉張力+非鍵張力,分子內張力是上述四種張力之和。
1、 角張力(亦稱Baeger張力):它是由於正常鍵角改變產生的。
2、 鍵張力:是由鍵的伸縮使正常鍵長改變而產生的張力。
3、扭轉張力(pitzer張力):它是由於優勢構象二面角改變而產生的張力。兩個連線四面體碳原子,他們都傾向於成為交叉式,與交叉式任何偏差都會引起一定張力,希望恢復到交叉式的最穩狀態,這種張力就是扭轉張力。
4、非鍵張力(范德華張力):非鍵合的原子或基團相互作用。
在小環化合物中(3~4元環)主要存在有角張力;普通環(5~7元環)各種張力都不顯著,6元環無角張力、無扭轉張力。 在中環(8~11元環)主要存有跨環張力。在大部分環狀化合物中(除大環外)大部分存在扭轉張力。
丁烷的構象
Ⅰ對位交叉,Ⅱ部分重疊,Ⅲ鄰位交叉,Ⅳ全重疊式,Ⅴ鄰位交叉,Ⅵ部分重疊,Ⅰ為優勢構象
從丁烷的勢能圖可見,有三個能量極大值,全重疊式為最大值;三個能量極小值,對位交叉為最小值。
穩定性次序:對位交叉﹥鄰位交叉﹥部分重疊﹥全重疊
兩個鄰位交叉Ⅲ、Ⅴ比對位交叉式略高0.8kcal/mol,是由於甲基之間的排斥作用,但由於能量相差不大,在室溫下,兩者都可存在。對位交叉占68%,鄰位交叉占32%。正丁烷體系不能分離出單一的構象異構體,他們這類化合物的性質是各種構象異構體的平均值。
環己烷構象
若環己烷分子中碳原子在同一平面上時,其C—C鍵角為120度,存在較大的角張力。實際上分子自動折曲而形成非平面的構象,在一系列構象的動態平衡中,椅式構象(chair conformation)和船式構象(boat conform ation)是兩種典型的構象。在常溫下,由於分子的熱運動可使船式和椅式兩種構象互相轉變,因此不能拆分環己烷的船式或府式中的某一種構象異構體。
構象對化學反應速度的影響
(1) 酯的水解
反式比順式在鹼性條件下水解快20倍。 鹼性、酸性水解,四面體機制。 鹼性水解條件下,HO-進攻羰基碳。在反式酯中,形成過渡態中,空間比較寬敞,有利。而在順式酯形成的過渡態中,雙1,3相互排斥,過於擁擠,不利。
(2)環己酮的還原
用LiAlH4-t-BuOH、NaBH、Na醇等作為還原劑時,真正的還原劑H-體積小,從羰基兩側進攻機會相當,由於e醇比較穩定,反應受“產物生成控制”。此時a 9%,e 91%。如果還原劑為或BH(CHMeCHMe2)2,其體積比較大,則產物以a-OH為主,反應受“立體途徑控制”。
構象對分子物化性質的影響
分子的構象不僅影響化合物的物理和化學性質,而且還對一些生物大分子(如蛋白質、酶、核酸)的結構和性能產生影響。許多藥物分子的構象異構與藥物生物活性密切相關,藥物受體一般只與藥物多種構象中的一種結合,這種構象稱為藥效構象。藥物的非藥效構象異構體很難與藥物的受體結合,通常低效或無藥效。例如,抗篾顫麻痹藥物多巴胺作用於受體的藥效構象是對位交叉式。