對稱函式和麥克唐納多項式--余代數結構與Kawanaka恆等式

對稱函式和麥克唐納多項式--余代數結構與Kawanaka恆等式

《對稱函式和麥克唐納多項式--余代數結構與Kawanaka恆等式》是2021年哈爾濱工業大學出版社出版的圖書。

基本介紹

  • 中文名:對稱函式和麥克唐納多項式--余代數結構與Kawanaka恆等式
  • 作者:[澳]羅賓·蘭格
  • 出版社:哈爾濱工業大學出版社
  • 出版時間:2021年9月
  • 開本:32 開
  • 裝幀:平裝-膠訂
  • ISBN:9787560343839
內容簡介,圖書目錄,

內容簡介

The ring of symmetric functions A, with natural basis given by the Schur functions, arise in many different areas of mathematics. For example, as the cohomology ring of the grassmanian, and as the representation ring of the symmetric group. One may define a coproduct on A by the plethystic addition on alphabets. In this way the ring of symmetric functions becomes a Hopf algebra. The Littlewood-Richardson numbers may be viewed as the structure constants for the co-product in the Schur basis. The first part of this thesis, inspired by the umbral calculus of Gian-Carlo Rota, is a study of the co-algebra maps of A, The Macdonald polynomials are a somewhat mysterious qt-deformation of the Schur functions. The second part of this thesis contains a proof a generating function identity for the Macdonald polynomials which was originally conjectured by Kawanaka.

圖書目錄

1.Symmetric functions of Littlewood-Richardson type
1.1.Symmetric Functions
1.1.1.Partitions
1.1.2.Monomial syrmnetric functions
1.1.3.Plethystic notation
1.1.4.Schur functions
1.2.The Umbral Calculus
1.2.1.Coalgebras
1.2.2.Sequences of Binomial Type
1.3.The Hall inner-product
1.3.1.Preliminaries
1.3.2.Column operators
1.3.3.Duality
1.4.Littlewood-Richardson Bases
1.4.1.Generalized complete symmetric functions
1.4.2.Umbraloperators
1.4.3.Column operators
1.4.4.Generalized elementary symmetric functions
1.5.Examples
2.A generating function identity for Macdonald polynomials
2.1.Macdonald Polynomials
2.1.1 .Notation
2.1.2.Operator definition
2.1.3.Characterization using the inner product
2.1.4.Arms and legs
2.1.5.Duality
2.1.6.Kawanaka conjecture
2.2.Resultants
2.2.1.Residue calculations
2.3.Pieri formula and recurrence
2.3.1.Arms and legs again
2.3.2.Pieri formula
2.3.3.Recurrence
2.4.The Proof
2.4.1.The Schur case
2.4.2.Step one
2.4.3.Step two
2.4.4.Step three
References
編輯手記

相關詞條

熱門詞條

聯絡我們