多物理場仿真:數值方法及工程套用(英文版)

多物理場仿真:數值方法及工程套用(英文版)

《多物理場仿真:數值方法及工程套用(英文版)》是2016年10月清華大學出版社出版的圖書,作者是張群、岑松。

基本介紹

  • 中文名:多物理場仿真:數值方法及工程套用(英文版)
  • 作者:張群、岑松
  • 出版社:清華大學出版社
  • 出版時間:2016年10月
  • 定價:79 元
  • ISBN:9787302450764
內容簡介,圖書目錄,

內容簡介

本書為英文版。書中詳細介紹了工程中常見的結構、流體、企辣船溫度、電磁微駝烏、噪聲等物理場間的耦合問題,論述了強耦合方法、弱耦合方法以及跨程式之間的耦合方法。對不同翻芝耦合邊界條件及其數值實現方法進行了深入討論,涉及流-固耦合、流-固-溫度場耦合、電磁-流-固-熱耦茅殃勸辨合等複雜耦合問題。書中還列棄捆譽舉了汽車工程、航空航天工程、旋轉機械、微機電系統生物醫學工程等領域的 20多個實際耦合分析案例。本書提供了從耦合理論和棵凶踏、方法、軟體開發到工程實踐的較為全面綜合的知識和工程實踐體系,可供相關學科和永駝廈行業的科研人員、工程技術人員、軟體開發人員閱讀參考,也可作為理工科相關課程的研究生教材。

圖書目錄

Contents
Preface v Acknowledgments vii
1 The physics models 1
1.1 Heat flow fundamentals 2
1.2 Fluid dynamics 6
1.3 Structural mechanics 26
1.4 Electromagnetic field 59
1.5 Acoustic analysis 93
2 Physics coupling phenomena and formulations 97
2.1 Introduction to coupling problems 98
2.2 General coupling equations 98
2.3 Types of coupling interfaces 102
2.4 Classification of coupling phenomena 103
2.5 The coupling matrices among physics models 104
2.6 Thermal–stress coupling 104
2.7 Fluid–structure interaction 107
2.8 Conjugate heat transfer problem 112
2.9 Acoustic–structure coupling 113
2.10 Piezoelectric analysis 115
2.11 Electrostatic–structure coupling 116
2.12 Magneto–structure coupling 116
2.13 Magneto–fluid coupling 117
2.14 Electrothermal coupling 118
2.15 Magnetic–thermal coupling 120
2.16 Summary of the coupling types 120
3 The coupling methods 125
3.1 Introduction to coupling methods 125
3.2 The strong coupling method 126
3.3 Weak coupling methods 133
3.4 Comparisons of the strong and weak coupling methods 151
3.5 Time integration scheme for transient multiphysics problems 152
Contents
4 Nonstructural physics with moving boundary 157
4.1 The moving domain problem in multiphysics simulation 157
4.2 Advanced morphing method 159
4.3 Automatic remeshing technology 160
4.4 Mesh controls for rotating machinery 164
4.5 Treatment for pinched flow problems 167
4.6 Examples for mesh control 167
5 Stabilization schemes for highly nonlinear problems 177
5.1 An overview of stabilization methods 177
5.2 Stabilization methods in spatial domain 178
5.3 Stabilization in the time integration scheme 191
5.4 Underrelaxation of the solution vector 197
5.5 Capping for the solution 198
5.6 Trade off the stability, accuracy, and efficiency 199
6 Coupling simulation for rotating machines 201
6.1 Reference frames 201
6.2 General coupling boundary conditions 203
6.3 Governing equations in body-attached rotating frame 209
6.4 Multiple frames of references for rotating problems 210
6.5 Morphing technology for rotating problems 219
6.6 Multiphysics simulation for rotating machines 220
7 High-performance computing for multiphysics problems 227
7.1 The challenges in large-scale multiphysics simulation 227
7.2 Parallel algorithm for the strong coupling method 228
7.3 Parallel scheme for weak coupling methods 230
8 General multiphysics study cases 233
8.1 Efficiency studies of strong and weak coupling methods for simple case 233
8.2 Fluid–structure interaction simulation of flow around a cylinder with a flexible flag attached 237
8.3 Fluid–structure simulation of a flapping wing structure in a water channel 245
9 Multiphysics applications in automotive engineering 251
9.1 The study of dynamic characteristics of hydraulic engine mounts by strong coupling finite element model 251
9.2 Weak coupling fluid–solid–thermal analysis of exhaust manifold 267
9.3 Coupling analysis of permanent magnet synchronous motor 273
Contents
10 Computational fluid dynamics in aerospace field and CFD-based multidisciplinary simulations 295
10.1 Application and development of computational fluid dynamics simulation in the aerospace field 295
10.2 The research topic and its progress 297
10.3 Example 310
11 Multiphysics simulation of microelectro-mechanical systems devices 329
11.1 Introduction to MEMS 329
11.2 Micropump 329
11.3 Natural convection cooling of a microelectronic chip 334
12 Bidirectional multiphysics simulation of turbine machinery 339
12.1 The fluid–structure–thermal bidirectional coupling analysis on the rotor system of turbo expander 339
12.2 The fluid–structure coupling analysis of the turbine blade 349
13 Multiphysics modeling for biomechanical problems 363
13.1 Numerical analysis of a 3D simplified artificial heart 363
13.2 FSI simulation of a vascular tumor 366
14 Other multiphysics applications 375
14.1 FSI simulation of a sensor device in civil engineering 375
14.2 Acoustic structural coupling case 381
15 Code implementation of multiphysics modeling 387
15.1 Overview of commercial CAE software for multiphysics 387
15.2 Code implementation for multiphysics modeling 389
References 397 Index 409
3 The coupling methods 125
3.1 Introduction to coupling methods 125
3.2 The strong coupling method 126
3.3 Weak coupling methods 133
3.4 Comparisons of the strong and weak coupling methods 151
3.5 Time integration scheme for transient multiphysics problems 152
Contents
4 Nonstructural physics with moving boundary 157
4.1 The moving domain problem in multiphysics simulation 157
4.2 Advanced morphing method 159
4.3 Automatic remeshing technology 160
4.4 Mesh controls for rotating machinery 164
4.5 Treatment for pinched flow problems 167
4.6 Examples for mesh control 167
5 Stabilization schemes for highly nonlinear problems 177
5.1 An overview of stabilization methods 177
5.2 Stabilization methods in spatial domain 178
5.3 Stabilization in the time integration scheme 191
5.4 Underrelaxation of the solution vector 197
5.5 Capping for the solution 198
5.6 Trade off the stability, accuracy, and efficiency 199
6 Coupling simulation for rotating machines 201
6.1 Reference frames 201
6.2 General coupling boundary conditions 203
6.3 Governing equations in body-attached rotating frame 209
6.4 Multiple frames of references for rotating problems 210
6.5 Morphing technology for rotating problems 219
6.6 Multiphysics simulation for rotating machines 220
7 High-performance computing for multiphysics problems 227
7.1 The challenges in large-scale multiphysics simulation 227
7.2 Parallel algorithm for the strong coupling method 228
7.3 Parallel scheme for weak coupling methods 230
8 General multiphysics study cases 233
8.1 Efficiency studies of strong and weak coupling methods for simple case 233
8.2 Fluid–structure interaction simulation of flow around a cylinder with a flexible flag attached 237
8.3 Fluid–structure simulation of a flapping wing structure in a water channel 245
9 Multiphysics applications in automotive engineering 251
9.1 The study of dynamic characteristics of hydraulic engine mounts by strong coupling finite element model 251
9.2 Weak coupling fluid–solid–thermal analysis of exhaust manifold 267
9.3 Coupling analysis of permanent magnet synchronous motor 273
Contents
10 Computational fluid dynamics in aerospace field and CFD-based multidisciplinary simulations 295
10.1 Application and development of computational fluid dynamics simulation in the aerospace field 295
10.2 The research topic and its progress 297
10.3 Example 310
11 Multiphysics simulation of microelectro-mechanical systems devices 329
11.1 Introduction to MEMS 329
11.2 Micropump 329
11.3 Natural convection cooling of a microelectronic chip 334
12 Bidirectional multiphysics simulation of turbine machinery 339
12.1 The fluid–structure–thermal bidirectional coupling analysis on the rotor system of turbo expander 339
12.2 The fluid–structure coupling analysis of the turbine blade 349
13 Multiphysics modeling for biomechanical problems 363
13.1 Numerical analysis of a 3D simplified artificial heart 363
13.2 FSI simulation of a vascular tumor 366
14 Other multiphysics applications 375
14.1 FSI simulation of a sensor device in civil engineering 375
14.2 Acoustic structural coupling case 381
15 Code implementation of multiphysics modeling 387
15.1 Overview of commercial CAE software for multiphysics 387
15.2 Code implementation for multiphysics modeling 389
References 397 Index 409

相關詞條

熱門詞條

聯絡我們