城市大腦平台套用與運維

城市大腦平台套用與運維

《城市大腦平台套用與運維》是2021年清華大學出版社出版的圖書。

基本介紹

  • 中文名:城市大腦平台套用與運維
  • 作者:阿里雲計算有限公司
  • 出版社:清華大學出版社
  • 出版時間:2021年10月1日
  • 頁數:196 頁
  • 開本:16 開
  • 裝幀:平裝
  • ISBN:9787302588542
內容簡介,圖書目錄,作者簡介,

內容簡介

本書從阿里雲城市大腦智慧型引擎的核心能力出發,分別使用“代碼實現”和“非代碼實現”兩種不同的項目實現方式模擬了“智慧交通”“城市管理”兩個背景下的多個不同套用場景,並以項目任務的方式分別設計了不同的項目和任務模組,介紹了智慧型語音套用開發、自然語言處理套用開發及智慧型視覺套用開發的方法。項目1設計了面向交通場景的大巴車調度功能、道路狀況反饋評價系統;項目2設計了高速路綠色通道卡口模型;項目3在“非代碼實現”的兩個套用場景下,從數據預處理到二分類算法搭建,講述了機器學習平台PAI中PAI-Studio可視化建模工具的使用;項目4設計了違章車牌識別和區域車流預測兩個不同的場景化任務;項目5面向城市管理設計了違章建築識別場景化任務,講解了視覺套用中不同算法的套用和實現。其中,項目5是拓展項目,讀者可以選學。
本書可作為高校計算機相關專業、人工智慧相關專業學生的教材,也可供相關科研人員、人工智慧愛好者參考。

圖書目錄

目 錄
Contents
項目1.智慧型語音及自然語言處理套用的開發—— 以交通行業場景為例
任務1-1.調用語音識別API實現大巴車調度功能…………………………………………3
任務1-1-1.大巴車調度項目數據準備……………………………………………………6
任務1-1-2.進入阿里雲智慧型語音互動平台………………………………………………6
任務1-1-3.調用實時語音識別API並記錄結果…………………………………………7
任務1-2.利用阿里雲PAI-DSW建模平台構建道路狀況反饋評價系統…………………9
任務1-2-1.道路狀況反饋評價系統數據準備……………………………………………12
任務1-2-2.為道路狀況反饋評價系統準備PAI-DSW平台環境……………………………13
任務1-2-3.編寫道路狀況反饋評價系統Python代碼……………………………………16
任務1-2-4.運行實驗代碼及記錄結果……………………………………………………19
項目總結……………………………………………………………………………………21
練習題………………………………………………………………………………………21
項目2.智慧型視覺套用的開發—— 以高速路綠色通道卡口場景為例
任務2-1.了解阿里雲視覺智慧型開放平台…………………………………………………25
任務2-1-1.了解阿里雲視覺智慧型開放平台的能力………………………………………29
任務2-1-2.了解視覺智慧型開放平台中的套用算法………………………………………31
任務2-2.為卡口項目準備數據和PAI-DSW平台環境…………………………………33
任務2-2-1.準備卡口項目數據……………………………………………………………35
任務2-2-2.為卡口項目創建OSS實例………………………………………………………37
任務2-2-3.創建並啟動PAI-DSW實例………………………………………………………37
任務2-3.高速路綠色通道卡口模型項目實現……………………………………………41
任務2-3-1.編寫Python代碼導入包………………………………………………………44
任務2-3-2.編寫Python代碼定義項目變數………………………………………………45
任務2-3-3.編寫Python代碼上傳圖片至OSS並獲取URL………………………………46
任務2-3-4.編寫Python代碼識別駕駛員信息是否和車輛信息一致……………………47
任務2-3-5.識別車輛信息並判斷是否為綠色通道可通行車輛……………………………48
項目總結……………………………………………………………………………………51
練習題………………………………………………………………………………………51
項目3.人工智慧套用算法模型開發——以城市管理場景為例
任務3-1.登錄並使用阿里機器學習PAI平台……………………………………………54
任務3-2.使用PAI-Studio可視化建模工具進行數據預處理……………………………57
任務3-2-1.在PAI-Studio平台上創建新項目……………………………………………58
任務3-2-2.在PAI-Studio平台創建數據源………………………………………………59
任務3-2-3.用PAI-Studio進行數據預處理………………………………………………62
任務3-2-4.用PAI-Studio進行數據分析及可視化………………………………………66
任務3-3.使用PAI-Studio可視化建模工具進行模型訓練………………………………68
任務3-3-1.二分類模型數據源建立及類型轉換……………………………………………69
任務3-3-2.二分類模型類型轉換後數據統計及可視化……………………………………70
任務3-3-3.搭建二分類模型訓練部分………………………………………………………72
任務3-3-4.搭建二分類模型預測部分……………………………………………………74
任務3-3-5.搭建二分類模型評估部分………………………………………………………75
任務3-4.使用PAI-DSW建模工具進行火情檢測算法模型開發…………………………………76
任務3-4-1.準備數據集並搭建實驗環境……………………………………………………80
任務3-4-2.PAI-DSW互動式建模實現ResNet+Softmax分類………………………………83
任務3-4-3.代碼實現及重難點分析………………………………………………………89
任務3-4-4.調整參數最佳化識別結果………………………………………………………96
項目總結……………………………………………………………………………………97
練習題………………………………………………………………………………………98
項目4.深度學習算法的套用——以城市交通場景為例
任務4-1.利用Pycharm平台實現違章車牌識別算法…………………………………101
任務4-1-1.U-Net和CNN網路的數據集處理……………………………………………104
任務4-1-2.模型訓練前的準備…………………………………………………………108
任務4-1-3.模型搭建及訓練實現………………………………………………………111
任務4-1-4.模型預測及預測結果………………………………………………………118
任務4-2.利用Pycharm平台實現區域車流預測算法…………………………………124
任務4-2-1.車流數據準備及預處理………………………………………………………127
任務4-2-2.算法模型搭建及訓練…………………………………………………………129
任務4-2-3.車流預測算法模型預測及套用………………………………………………136
項目總結…………………………………………………………………………………145
練習題……………………………………………………………………………………146
項目5.深度學習算法模型設計及套用——以城市管理場景為例
任務5-1.違章建築檢測項目數據準備……………………………………………………149
任務5-1-1.違章建築數據集預處理……………………………………………………150
任務5-1-2.違章建築數據集標註………………………………………………………151
任務5-2.違章建築檢測深度學習算法模型的實現………………………………………153
任務5-2-1.預權重載入目標識別網路……………………………………………………156
任務5-2-2.模型訓練準備…………………………………………………………………163
任務5-2-3.模型搭建及訓練………………………………………………………………168
任務5-2-4.模型預測及預測結果…………………………………………………………171
項目總結…………………………………………………………………………………176
練習題……………………………………………………………………………………177
附錄1.子賬戶的創建及登錄……………………………………………………………… 178
附錄2.登錄OSS管理控制台………………………………………………………………183
附錄3.DSW對訪問實例的管理……………………………………………………………184
參考文獻…………………………………………………………………………………………186

作者簡介

阿里雲計算有限公司,阿里雲創立於2009年,為阿里巴巴集團的數位技術與智慧型骨幹業務,向全球客戶提供全方位雲服務,包括彈性計算、資料庫、存儲、網路虛擬化服務、大規模計算、安全、管理和套用服務、大數據分析、機器學習平台以及物聯網服務。IDC的資料顯示,按2019年收入計算,阿里雲是中國領先的公有雲服務(包括PaaS和IaaS服務)提供商。而根據Gartner於2020年4月的報告提供的數據,按2019年收入計算,阿里巴巴集團是世界排名第三、亞太地區排名第一的基礎設施即服務提供商。

相關詞條

熱門詞條

聯絡我們