《固體中的光相互作用 (第二版)(英文影印版)》是2014年12月29日出版的圖書,作者是迪巴爾托洛。
基本介紹
- 中文名:固體中的光相互作用 (第二版)(英文影印版)
- 作者:迪巴爾托洛
- 出版時間:2014年12月29日
- 出版社:北京大學出版社
- ISBN:9787301251720
出版背景,作者簡介,主要內容,章節目錄,
出版背景
本書系統而全面地介紹了固體光特性的一些原理。本書為在固體材料吸收和螢光光譜領域,及雷射領域工作的科研人員提供了詳實的理論背景。通過群論這一工具,以及對於對稱性的討論,本書統一地闡述了輻射場的量子理論、分子熱振動、晶體、共價鍵等內容。 本書既適合科研人員參考,也適合研究生和高水平本科生閱讀。
作者簡介
美國波士頓學院教授,美國波士頓學院教授,美國波士頓學院教授,美國波士頓學院教授,美國波士頓學院教授,美國波士頓學院教授,美國波士頓學院教授.
主要內容
書號: | 25172 | ISBN: | 978-7-301-25172-0 |
作者: | (美)迪巴爾托洛 | 版次: | 1 |
開本: | 16開 | 裝訂: | 平 |
字數: | 635 千字 頁數:636 | 定價: | ¥107.00 |
瀏覽次數: | 192 | ||
出版日期: | 2014-12-29 | 叢書名: | 中外物理學精品書系 |
章節目錄
Preface to the Second Edition vii
1. Elements of Quantum Mechanics
1. Review of ClassicalMechanics
2. Vector Spaces and Linear Operators
3. Basic Postulates of Quantum Mechanics
4. Compatible Observables and Complete Set of Commuting Operators
5. Formof the Operators
6. Matrix Formalism and Transformation Theory
7. General Theory of Angular Momentum
8. Time-Independent Perturbation Theory
9. Time-Dependent Perturbation Theory
2. Elements of Group Theory
1. Properties of a Group
2. Classes
3. Theory of Representations
4. Schur's Lemma and Orthogonality Relations
5. Characters of a Group
6. Properties of the Irreducible Representations of a Group
7. The Direct Product Representation
8. Product Groups and Their Representations
9. Summary of Rules
10. Groups of Real Orthogonal Matrices
11. Space Groups and Symmetry of Crystalline Solids
12. The Irreducible Representations of a Group of Primitive Translations
13. The Irreducible Representations of Space Groups
3. Connection of Quantum Mechanics with Group Theory
1. The Effect of an Orthogonal Coordinate Transformation on the Vectors of a Hilbert Space
2. The Symmetry Group of the Schr¨odinger Equation
3. The Fundamental Theorem for Functions and OperatorsTransforming Irreducibly
4. The Construction of Functions Transforming Irreducibly
5. The Full Rotational Group and the Quantum Theory of Angular Momentum
6. The Spin of the Electron and the Double Valued Representations
7. The Kramers'Degeneracy
8. The Symmetric Group of the Hamiltonian and the Pauli Principle
4. The Hydrogen Atom
1. The Unperturbed Hamiltonian
2. The Spin-Orbit Interaction
3. The Zeeman Interaction
4. Group Theoretical Considerations for the H Atom
5. The Complex Atom: Multiplet Theory
1. The Helium Atom
2. The Many Electron Atom
3. Group Theoretical Considerations for a Complex Atom
4. The Energies of Spectral Terms
5. Hund's Rules and the Principle of Equivalence of Electrons and Holes
6. The Spin-Orbit Splitting of Terms
7. An Example of Spin-Orbit and Zeeman Splitting
6. The Magnetic Ion in a Crystal: The Role of Symmetry
1. Bonding in Crystals
2. The Ionic Bond in Crystals
3. Electronic Configurations and PropertiesofMagnetic Ions
4. The Crystalline Field Hypothesis
7. The Weak Field Scheme
1. The Hamiltonian of the Free Ion
2. The Crystal Field Perturbation
3. Application of theWeak Field Scheme
4. Splittings of J Levels in Fields of DifferentSymmetries
8. The Medium Field Scheme
1. The Hamiltonian of the Free Ion
2. The Crystal Field Perturbation
3. The Spin-Orbit Interaction
4. An Application of the Medium Field Scheme
5. The Method of Operator Equivalents: The Splitting ofTransition Metal Ions Levels in an OctahedralCrystal Field
9. The Strong Field Scheme
1. The Unperturbed Hamiltonian
2. The Crystal Field Perturbation
3. The Electrostatic Interaction
4. The Spin-Orbit Interaction
10. Covalent Bonding and Its Effect on MagneticIons in Crystals
1. The Relevance of Covalent Bonding
2. The Formation of Molecular Orbitals
3. Example of Molecular Orbitals Formation
4. The Use of Projection Operators in the ConstructionofMolecularOrbitals
5. The Formation of Hybrids
6. Hybrids of the Central Ion in a TetrahedralComplex AB4
7. Hybrids of the Central Ion in an OctahedralComplex AB6
8. The Combinations of Ligand Orbitals in anABn Complex
9. The Energy Levels of an ABn Complex
11. The Quantum Theory of the Radiation Field
1. The Classical Electromagnetic Field
2. The Quantum Theory of the Electromagnetic Field
12. Molecular Vibrations
1. The Classical Theory of Molecular Vibrations
2. The Symmetry of the Molecules and theNormal Coordinates
3. How to Find the Normal Modes of Vibration
4. The Use of Symmetry Coordinates
5. The Quantum Theory of Molecular Vibrations
6. The Selection Rules for Infrared and Raman Transitions,The Fermi Resonance
7. The Normal Modes and the Symmetry Coordinatesof a Tetrahedral Complex AB4
8. The Normal Modes and the Symmetry Coordinatesof an Octahedral Complex AB6
13. Lattice Vibrations
1. The Geometry of Crystalline Solids
2. Lattice Vibrations of an Infinite Crystal withOne AtomPer Unit Cell
3. Lattice Vibrations of a Finite Crystal withOne AtomPer Unit Cell
4. Lattice Vibrations of a Crystal with More ThanOne AtomPer Unit Cell
5. Thermodynamics of Phonons
6. Phonons and Photons. Similarities and Differences
14. The Ion-Photon Interaction: Absorption andEmission of Radiation
1. The Ion-Radiation Interaction
2. The Expansion of the Interaction Hamiltonian:Different Types of Radiation
3. The Density of Final States
4. The Transition Probability Per Unit Time
5. Dipole Radiation
6. Selection Rules for Radiative Transitions
7. About the Intensities of Radiative Transitions
8. The Static Effects of the Interaction Betweenan Atomic System and the Electromagnetic Field
15. The Judd-Ofelt Theory
1. Motivation
2. General Considerations
3. The Theory
4. Applications
16. The Ion-Vibration Interaction. RadiationlessProcesses, Thermal Shift, and Broadeningof Sharp Lines
1. The Ion-Vibration Interaction
2. Radiationless Processes in Crystals
3. Different Types of Line Broadening Mechanisms:Lorentzian and Gaussian Line Shapes
4. Theory of Thermal Broadening of Sharp Lines
5. Theory of Thermal Line Shift
17. Vibrational-Electronic Interaction and Spectra
1. Introduction
2. Ion-Vibration Interaction in Molecular Complexes
3. Vibronic Spectra of Molecular Complexes
4. Space Groups and Lattice Vibrations
5. Lattice Absorption in Perfect Crystals
6. Phonon Activation Due to Impurity Ionsin Perfect Crystals
7. Selection Rules for Vibronic Transitions Dueto Magnetic Impurities in Crystals
18. Energy Transfer Among Ions in Solids
1. Quantum-Mechanical Treatment of the InteractionsAmong Atoms
2. Different Types of Interactions
3. Modes of Excitation and Transfer
4. Energy Transfer with No Migration of ExcitationAmong Donors
5. Energy Transfer with Migration of ExcitationAmong Donors
19. Absorption Spectra of Magnetic Ions in Crystals
1. The A and B Coefficients as Related to Magnetic Ionsin Crystals
2. General Properties of Absorption Spectra
3. Absorption Spectra of Magnetic Ions in Crystals
4. The Effects of Temperature on Absorption Spectra
5. Excited State Absorption
20. Fluorescence Spectra of Magnetic Ions in Crystals
1. The Fluorescence Emission of Magnetic Ions UnderContinuous Excitation
2. The Response of Fluorescent Systemsto Transient Excitation
3. General Properties of the Fluorescence Decaysin aMultilevel System
4. Interactions of Magnetic Ions and Their Effectson the FluorescenceOutput
5. The Factors Affecting the Fluorescence Emission
6. Fluorescence of Magnetic Ions in Crystals
21. Elements of Laser Theory
1. Laser Conditions
2. Examples of Ionic Solid State Lasers
References
Subject Index