單調運算元

單調運算元

單調運算元(monotonic operator)的概念起源於可微凸泛函的導數。設φ是在B空間X上定義的這種函式,則 <φ'(x)-φ'(y),x-y>≥0,對任意的x,yX,其中<,>表示X'與X之間的對偶。直線上的可微凸函式的導函式是單調不減的,於是就把滿足特定條件的運算元T:XX' ,稱為單調運算元,如果α>0則稱為強單調運算元。自反B空間上弱線段連續的強單調運算元是 XX* 的滿射(所謂弱線段連續,指對任意的x,y∈X,T(x+ty)→T(x)當 t→0)。這個滿射性定理是G.J.明蒂、F.E.布勞德給出的,它在非線性運算元半群理論、非線性發展方程以及一類非線性橢圓型方程的存在性理論中經常用到。

基本介紹

  • 中文名:單調運算元
  • 外文名:monotonic operator
  • 起源:可微凸泛函的導數
  • 類型:導數
  • 學科:數學
  • 屬於:非線性運算元
單調運算元的概念,單調運算元的基本性質,

單調運算元的概念

單調運算元的理論是非線性泛函分析中的一個重要分支,它在非線性偏微分方程、非線性積分方程及Banach空間微分方程等方面都有較廣泛的套用。
設X是實Banach空間,X'是X的共軛空間。
定義1.1,設
,運算元T:D→X',如果滿足條件:
則稱T是單調運算元(映射),若當
時,必有x=y,則稱T是嚴格單調的。
從這個定義可以看出,若T是線性運算元,則T為單調的充要條件是
,稱G為單調集,如果
因此,T:D→X'為單調運算元的充要條件為它的圖像
是X×X'內的單調集。

單調運算元的基本性質

命題1.1,設H是Hilbert空間,則T:H→2H為單調的充要條件是
定義1.2,設
,運算元T:D→X'。
(1)設x0∈D,如果xn∈D,
,則稱T在x0處是次連續的(demi-continuous)。若T在D內每一點都次連續,則稱T在D上次連續。
(2)設x0∈D,若h∈X,tn>0,x0+tnh∈D,
,則稱T在x0是半連續的(hemi-continuous)。若T在D內每一點都半連續,則稱T在D上半連續。
(3)設x0∈D,T稱為在x0處是局部有界的,如果存在x0的領域U,使得集合
在X'內是有界的。
顯然,T在x0處連續→T在x0處半連續且T在x0處局部有界。
命題1.2,設T是極大單調運算元,[xn,yn]∈G(T)滿足xn→x,yn→y且
,則[x,y]∈G(T) 且
命題1.3,設T:X→X'是半連續單調運算元,且D(T)=X,則T是極大單調運算元。

相關詞條

熱門詞條

聯絡我們