唐威華

唐威華

唐威華,女,博士研究生,博士生導師,中共黨員。

現任中國科學院分子植物科學卓越創新中心紀委委員,研究員。

基本介紹

  • 中文名:唐威華
  • 國籍中國
  • 畢業院校復旦大學、中國科學院上海植物生理所
  • 學位/學歷:博士
人物經歷,教育背景,工作經歷,社會兼職,研究方向,主要成就,科研項目,代表論文,

人物經歷

教育背景

1989年9月-1993年7月 復旦大學遺傳學及遺傳工程系遺傳學專業本科畢業,授予學士學位。
1993年9月-1999年9月 中國科學院上海植物生理所植物分子遺傳國家重點實驗室分子遺傳學專業博士畢業,授予博士學位。

工作經歷

2000年5月-2004年4月 美國加州大學伯克利分校植物和微生物學系,Plant Gene Expression Center從事博士後研究。
2004年5月-2006年2月 美國杜邦公司所屬Pioneer Hi-bred International Inc.,作為visiting scientist參加信號傳導研究。
2006年3月-2006年5月 美國加州大學伯克利分校Plant Gene Expression Center,作為visiting scientist研究植物生殖發育。
2006年5月-2015年4月 中國科學院植物生理生態研究所研究組長,研究員。
2015年4月-2020年9月 中國科學院植物生理生態研究所紀委書記、副所長,研究員。
2020年9月- 中國科學院分子植物科學卓越創新中心紀委委員,研究員。

社會兼職

2014-08-01-今,中國植物生理與植物分子生物學學會, 秘書長

研究方向

植物-真菌相互作用及植物生殖發育研究
研究工作
圍繞細胞頂端生長的分子機制與信號轉導,以植物病原真菌的菌絲和顯花植物的花粉管為兩個模式系統,從事兩方面研究:重要植物病原真菌禾穀鐮孢侵染玉米、小麥等宿主致病的分子機理,以及宿主植物細胞等對真菌侵染的應答反應和抗/感病分子機制;植物有性生殖發育的調控機理,主要集中在分析花粉受體激酶(LePRKs)的信號轉導途徑及其對花粉管生長的調控。

主要成就

1、揭示小麥赤霉病菌禾穀鐮孢(Fusarium graminearum)在小麥體內頂端生長的細胞學進程,雷射微切割獲得禾穀鐮孢侵染中的動態轉錄組分析揭示其侵染策略(Zhang et al., Plant Cell, 2012);揭示禾穀鐮孢菌侵染玉米導致赤霉莖腐病的細胞學進程和侵染時期特異性轉錄組,並闡明禾穀鐮孢菌通過合成無磷膜脂克服玉米莖部細胞間磷匱乏的侵染新機制(Zhang et al., PLoS Pathogens, 2016); 發現並鑑定出一個新型的線性非核糖體八肽鐮孢菌素A是賦予禾穀鐮孢菌以細胞到細胞穿壁生長侵染小麥能力的效應因子(Jia et al., Nature Communications, 2019);研究發現N-羥基哌啶酸作為系統獲得性抗性誘導分子在受到禾穀鐮孢菌侵染時對小麥能起到部分保護作用(Zhang et al., Frontiers in Microbiology 2021)。
2、發現花粉管頂端生長從管狀到出泡模式的轉換由花粉受體激酶LePRK1、小G蛋白鳥苷轉換因子KPP和微絲成束因子PLIM2a複合體控制(Gui et al., Plant Cell, 2014);闡明番茄雌蕊分泌的信號蛋白STIG1促進花粉管頂端生長加速的機制在於其結合花粉管表面磷脂醯肌醇3磷酸和花粉受體激酶LePRK2(Huang et al., Plant Cell, 2014);研究闡明花粉管特異小G蛋白鳥苷轉換因子KPP聯結花粉受體激酶LePRK1/2、ROP小G蛋白以及微絲成束因子PLIM2a、微絲成核因子ARP2/3複合體,象變阻器一樣可逆調控番茄花粉管生長速度,且在控制花粉管形態中起重要作用(Liu et al., Plant Phys. 2020)。

科研項目

( 1 ) 轉錄組數據支持的花粉管頂端生長機制深入解析, 主持, 國家級, 2016-01--2019-12
( 2 ) 死體營養病害信息識別解碼, 主持, 部委級, 2014-07--2019-06
( 3 ) 主要農作物抗病蟲抗逆性狀形成的分子基礎, 參與, 國家級, 2016-09--2020-12
( 4 ) 植物胚乳發育及儲藏物質累積的分子調控機制研究, 參與, 國家級, 2015-01--2016-08
( 5 ) 重要性狀基因克隆及功能驗證, 參與, 國家級, 2016-01--2016-12
( 6 ) 植物特化性狀形成的分子基礎即定向發育調控, 主持, 部委級, 2020-10--2023-05
( 7 ) 全面解析禾穀鐮孢菌與寄主農作物時空特異性東太湖做的分子機制, 主持, 國家級, 2018-01--2022-12

代表論文

1. Ma B, Zhang L, Gao Q, Wang J, Li X, Wang H, Liu Y, Lin H, Liu J, Wang X, Li Q, Deng Y, Tang W*, Luan S*, He Z* (2021) A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals. Nat Genet. doi: 10.1038/s41588-021-00855-6.
2. Zhang E#, Zhang H#, Tang WH*(2021) Transcriptomic Analysis of Wheat Seedling Responses to the Systemic Acquired Resistance Inducer N-Hydroxypipecolic Acid. Frontiers in Microbiology 12:621336
3. Fan P, Aguilar E, Bradai M, Xue H, Wang H, Rosas-Diaz T, Tang W, Wolf S, Zhang H, Xu L, Lozano-Durán R*. (2021) The receptor-like kinases BAM1 and BAM2 are required for root xylem patterning. Proc Natl Acad Sci U S A. 118(12): e2022547118.
4. Liu HK#, Li YJ#, Wang SJ, Yuan TL, Huang WJ, Dong X, Pei JQ, Zhang D, McCormick S, Tang WH*. (2020) Kinase Partner Protein Plays a Key Role in Controlling the Speed and Shape of Pollen Tube Growth in Tomato. Plant Physiol. 184(4):1853-1869. doi: 10.1104/pp.20.01081.
5. Jia LJ#, Tang HY#, Wang WQ#, Yuan TL, Wei WQ, Pang B, Gong XM, Wang SF, Li YJ, Zhang D, Liu W*, Tang WH* (2019) A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat. Nat Commun. 10(1):922.
6. Guo Y, Yao S, Yuan TL, Wang Y, Zhang D, Tang WH*. (2019) The spatiotemporal control of KatG2 catalase-peroxidase contributes to the invasiveness of Fusarium graminearum in host plants. Mol Plant Pathol. 20(5):685-700. doi: 10.1111/mpp.12785. (cover image)
7. Zhang L, Cenci A, Rouard M, Zhang D, Wang YY*, Tang WH*, Zheng SJ* (2019). Transcriptomic analysis of resistant and susceptible banana corms in response to infection by Fusarium oxysporum f. sp. cubense tropical race 4. Scientific Reports 9(1): 8199.
8. Li YJ, Pei JQ, Tang WH* (2019) What took you so long? Peptide-receptor kinase signaling mediates reproductive isolation in plants. Sci. Bulletin 64:1390-1392
9. Yuan TL, Huang WJ, He J, Zhang D*, Tang WH*. (2018) Stage-specific gene profiling of germinal cells helps delineate the mitosis/meiosis transition. Plant Physiol. 176 (2) 1610-1626
10. Zhang, L., Yuan, T., Wang, Y., Zhang, D., Bai, T., Xu, S., Wang, Y., Tang, W. Zheng, S-J* (2018) Identification and evaluation of resistance to Fusarium oxysporum f. sp. cubense tropical race 4 in Musa acuminata Pahang Euphytica 214: 106.
11. Barberini ML, Sigaut L, Huang W, Mangano S, Juarez SPD, Marzol E, Estevez J, Obertello M, Pietrasanta L, Tang W, Muschietti J*. (2018) Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor. Plant Reprod. 31(2):159-169
12. Xie, Q-N. Jia, L-J. Wang, Y-Z., Song, R-T., Tang, W-H* (2017) High-resolution gene profiling of infection process indicates serine metabolism adaptation of Fusarium graminearum in host, Science Bulletin, 62:758-760
13. Yao, S-H., Guo, Y., Wang, Y-Z., Zhang, D., Xu, L., Tang, W-H.* (2016) A cytoplasmic Cu-Zn superoxide dismutase SOD1 contributes to hyphal growth and virulence of Fusarium graminearum, Fungal Genetics and Biology, 91:32-42
14. Zhang, Y.#, He, J.#, Jia, L-J., Yuan, T-L., Zhang, D., Guo, Y., Wang, Y., Tang, W-H.* (2016) Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates its Strategies in Confronting Phosphorus Limitation in the Host Apoplast. PLoS Pathogens 12(3): e1005485.
15. Jia, L-J, and Tang, W-H* (2015) The omics era of Fusarium graminearum: opportunities and challenges. New Phytol. 207(1):1-32.
16. Gui CP#, Dong X#, Liu HK, Huang W, Zhang, D, Wang S, Barberini ML, Gao X, Muschietti J, McCormick S, and Tang W-H* (2014) Overexpression of the tomato pollen receptor kinase LePRK1 rewires pollen tube growth to a blebbing mode. Plant Cell 26: 3538–3555, doi:10.1105/tpc.114.127381
17. Huang, W-J., Liu, H-K., McCormick, S., Tang, W-H.* (2014) Tomato Pistil Factor STIG1 Promotes in Vivo Pollen Tube Growth by Binding to Phosphatidylinositol 3-Phosphate and the Extracellular Domain of the Pollen Receptor Kinase LePRK2. Plant Cell. 26: 2505–2523,doi: 10.1105/tpc.114.123281
18. Zhu, P., Wu, L., Liu, L., Huang, L., Wang, Y., Tang, W., and Xu, L.* (2013) Fusarium asiaticum: an Emerging Pathogen Jeopardizing Postharvest Asparagus Spears. Journal of Phytopathology 161:696–703 doi: 10.1111/jph.12120
19. Liu, X., Zhang, X., Tang, W-H., Chen, L., and Zhao, X.-M.* (2013) eFG: an electronic resource for Fusarium graminearum. Database (Oxford); doi: 10.1093/database/bat042
20. Cheung, A, Palanivelu, R, Tang, W-H, Xue, H-W,, and Yang, W-C. (2013) Pollen and Plant Reproduction Biology: Blooming from East to West. Molecular Plant, 6 (4): 995-997
21. Zhang, X-W., Jia, L-J., Zhang, Y., Jiang, G., Li, X., Zhang, D., and Tang, W-H.* (2012) In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles. Plant Cell 24: 5159-5176
22. Tang, W-H., Zhang, Y. and Duvick, J. (2012) The Application of Laser Microdissection to Profiling Fungal Pathogen Gene Expression in planta. Methods in Molecular Biology: Plant Fungal Pathogens 835:219-36
23. Lu, T., Zhu, C., Lu, G., Guo, Y., Zhou, Y., Zhang, Z., Zhao, Y., Li, W., Lu, Y., Tang, W., Feng, Q., Han, B.* (2012) Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice. BMC Genomics 13:721.
24. Tang, X., Zhang, Z.Y., Zhang, W.-J., Zhao, X.M., Li, X., Zhang, D., Liu, Q.Q. and Tang, W.H.* (2010) Global Gene Profiling of Laser-Captured Pollen Mother Cells Indicates Molecular Pathways and Gene Subfamilies Involved in Rice Meiosis. Plant Physiology 154: 1855-1870
25. Liu, X., Tang, W.H., Zhao, X.M.* and Chen, L.* (2010) A Network Approach to Predict Pathogenic Genes for Fusarium graminearum. PLoS ONE 5(10): e13021.
26. Zhao, X.M.*, Zhang, X.-W., Tang, W.H. and Chen, L. (2009) FPPI: Fusarium graminearum Protein-Protein Interaction Database. J. Proteome Res. 8(10): 4714–4721
27. Zhang, D., Wengier, D., Shuai, B., Gui, C.P., Muschietti, J., McCormick, S. and Tang, W-H.* (2008) The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiology 148:1368-1379
28. Tang, W., Coughlan, S., Crane, E, Beatty, M. and Duvick, J.* (2006) The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola. Mol. Plant Microbe Interactions 19: 1240-1250.
29. Tang, W., Kelley, D., Ezcurra, I., Cotter, R. and McCormick, S.* (2004) LeSTIG1, an extracellular binding partner for the pollen receptor kinases LePRK1 and LePRK2, promotes pollen tube growth in vitro. Plant J. 39: 343-353
30. Guyon, V., Tang, W., Monti, M., Raiola, A., Lorenzo, G., McCormick, S. and Taylor, L.* (2004) Antisense phenotypes reveal a role for SHY, a pollen-specific leucine-rich repeat protein, in pollen tube growth. Plant J. 39:643-654
31. Wengier, D., Valsecchi,I., Cabanas, M.L., Tang, W., McCormick, S. and Muschietti, J.* (2003). The pollen-specific receptor kinases LePRK1 and LePRK2 associate in pollen and when expressed in yeast, but dissociate in the presence of style extract. Proc. Natl. Acad. Sci. USA 100:6860-6865
32. Chen, J., Tang, W., Hong, M. and Wang, Z.* (2003). OsBP-73, a rice gene encodes a novel DNA-binding protein with a SAP-like domain and its genetic interference by double-stranded RNA inhibits rice growth. Plant Mol. Biol. 52:579-590.
33. Tang, W., Ezcurra, I., Muschietti, J. and McCormick, S.* (2002). A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 14: 2277-2287.

相關詞條

熱門詞條

聯絡我們