唐傑(清華大學教授)

唐傑(清華大學教授)

唐傑清華大學計算機科學與技術系長聘教授,計算機系副主任、清華-工程院知識智慧型聯合實驗室主任,獲傑青。研究興趣包括:社會網路分析、數據挖掘、機器學習和知識圖譜。發表論文200餘篇,擁有專利20餘項。主持研發了研究者社會網路挖掘系統AMiner,吸引了220個國家/地區1000多萬獨立IP訪問。曾擔任國際期刊ACM TKDD的執行主編和國際會議CIKM’16、WSDM’15的程式委員會主席、KDD’18大會副主席以及IEEE TKDE、ACM TIST、IEEE TBD等期刊編委。獲英國皇家學會-牛頓高級獎學金、CCF青年科學家獎、國家自然科學基金委員會傑出青年學者、北京市科技進步一等獎、中國人工智慧學會科技進步一等獎、KDD'18 傑出貢獻獎。2012年國家優秀青年科學基金獲得者。

基本介紹

  • 中文名:唐傑
  • 畢業清華大學
  • 研究領域:社會網路分析、數據挖掘等
  • 成就:國際SIMagine開發大賽等
教育背景,研究領域,研究概況,研究課題,獎勵與榮譽,出版著作,社會兼職,

教育背景

工學博士 (計算機科學與技術), 清華大學, 中國, 2006.

研究領域

人工智慧
數據挖掘
社交網路
機器學習
知識圖譜

研究概況

研究興趣主要包括人工智慧、數據挖掘、社交網路、機器學習以及知識圖譜。
主要創新性研究包括:
1)社會影響力分析:提出基於話題的社會網路影響力模型,針對大規模社會網路進行用戶級別的微觀建模,自動計算用戶之間基於不同話題層次的影響力強度,為定量化、細粒度的網路影響力分析給出理論基礎,部分解決了影響力最大傳播模型的輸入假設問題。
2)社會網路用戶行為建模:將社會網路的基礎理論(結構平衡理論、兩階段傳播理論、結構洞理論等) 融入機率因子圖模型中對社會網路關係和強度進行定量描述,實現了社會網路關係挖掘的統一學習算法。
3)網路行為建模和影響力分析,提出了針對社會網路的微觀動態分析方法,並首次提出了社會影響力的量化分析方法,以及社會網路行為和社會影響力關聯關係的分析方法。
4)套用上述研究成果,研發了完全自主智慧財產權的科技情報大數據挖掘與服務平台AMiner。系統2006年上線以來,吸引了來自全球220個國家/地區的1000多萬次獨立IP訪問。

研究課題

國家自然科學基金課題: 統一的語義內容標註模型研究 (2008-2010);
國家自然科學基金重點課題: 面向Web的社會網路理論與方法研究 (2010-2013);
863課題: 基於機率圖模型的異構XML數據集成與檢索 (2009-2010);
IBM國際合作項目: 社會網路搜尋和挖掘 (2007-2011);
Nokia國際合作項目: 基於移動終端的本體場景建模和管理 (2009-2011).

獎勵與榮譽

  • 2018年國家自然科學基金傑出青年基金
  • 2017年北京市科學技術獎一等獎
  • 2016年微軟亞洲研究院合作研究獎
  • 2015年牛頓高級學者基金
  • 2013年中國人工智慧學會(CAAI)吳文俊人工智慧科學技術(進步)一等獎
  • 2012年CCF青年科學家獎
  • 2012年NSFC優秀青年學者
  • 2011年北京科技新星
  • 2010年IBM可擴展數據分析創新教師獎
  • 2010年清華學術新人獎
  • 2012年JCDL最佳學生論文提名
  • 2011年PKDD最佳學生論文報導
  • 2016年度清華大學計算機系先進工作者
  • 2012年度清華大學計算機系先進工作者
  • 2011年度清華大學先進工作者
  • 2011年度清華大學計算機系先進工作者
  • 2007年度清華大學計算機系先進工作者
  • 2006年度清華大學優秀博士論文

出版著作

[1] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie Tang. NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization. In Proceedings of the Web Conference 2019 (WWW'19) (accepted).
[2] Yukuo Cen, Jing Zhang, Gaofei Wang, Yujie Qian, Chuizheng Meng, Zonghong Dai, Hongxia Yang, and Jie Tang. Trust Relationship Prediction in Alibaba E-Commerce Platform. IEEE Transaction on Knowledge and Data Engineering (TKDE), 2019 (accepted).
[3] Wenzheng Feng, Jie Tang, Tracy Xiao Liu, Shuhuai Zhang, and Jian Guan. Understanding Dropouts in MOOCs. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI'19).
[4] Yi Qi, Qingyun Wu, Hongning Wang, Jie Tang, and Maosong Sun. Bandit Learning with Implicit Feedback. In Proceedings of the Thirty-Second Annual Conference on Neural Information Processing Systems (NIPS'18).
[5] Yutao Zhang, Fanjin Zhang, Peiran Yao, and Jie Tang. Name Disambiguation in AMiner: Clustering, Maintenance, and Human in the Loop. In Proceedings of KDD’18, pages 1002-1011.
[6] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. DeepInf: Social Influence Prediction with Deep Learning. In Proceedings of the Twenty-Forth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'18).
[7] Hong Huang, Yuxiao Dong, Jie Tang, Hongxia Yang, Nitesh V. Chawla, and Xiaoming Fu . Will Triadic Closure Strengthen Ties in Social Networks? ACM Transactions on Knowledge Discovery from Data (TKDD), 2018, Volume 12 Issue 3, Article No. 30.
[8] Yang Yang, Jie Tang, and Juanzi Li. Learning to Infer Competitive Relationships in Heterogeneous Networks. ACM Transactions on Knowledge Discovery from Data (TKDD), 2018, Volume 12 Issue 1, Article No. 12
[9] Yujie Qian, Jie Tang, and Kan Wu. Weakly Learning to Match Experts in Online Community. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI'18).
[10] Kan Wu, Jie Tang, and Chenhui Zhang. Where have you been? Inferring career trajectory from academic social network. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI'18).
[11] Tiancheng Shen, Jia Jia, Guangyao Shen, Fuli Feng, Xiangnan He, Huanbo Luan, Jie Tang, Tatseng Chua, Thanassis Tiropanis, and Wendy Hall. Cross-Domain Depression Detection via Harvesting Social Media. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI'18).
[12] Xiaotao Gu, Hong Yang, Jie Tang, Jing Zhang, Fanjin Zhang, Debing Liu, Wendy Hall, and Xiao Fu. Profiling Web Users Using Big Data. Social Network Analysis and Mining (SNAM), accepted.
[13] Hong Huang, Yuxiao Dong, Jie Tang, Hongxia Yang, Nitesh V. Chawla, and Xiaoming Fu. Will Triadic Closure Strengthen Ties in Social Networks? ACM Transactions on Knowledge Discovery from Data (TKDD), accepted.
[14] Yutao Zhang, Robert Chen, Jie Tang, Jimeng Sun, and Walter Stewart. LEAP: Learning to Prescribe Effective and Safe Treatment Combinations for Multimorbidity. In Proceedings of the Twenty-Third ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'17), pages 1315-1324.
[15] Jing Zhang, Jie Tang, Yuanyi Zhong, Yuchen Mo, Juanzi Li, Guojie Song, Wendy Hall, and Jimeng Sun. StructInf: Mining Structural Influence from Social Streams. In Proceedings of AAAI'17, pages 73-79.
[16] Jie Tang. Computational Models for Social Network Analysis: A Brief Survey. In Proceedings of WWW'17, pages 921-925.
[17] Yu Han, Jie Tang, Hao Ye, and Bo Chen. Who to Invite Next? Predicting Invitees of Social Groups. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'17), pages 921-925.
[18] Liangming Pan, Chengjiang Li, Juanzi Li, and Jie Tang. Prerequisite Relation Learning for Concepts in MOOCs. In Proceedings of the 55th Annual Meeting of the Association of Computational Linguistics (ACL'17), pages 1447-1456.
[19] Jie Tang. Computational Models for Social Network Analysis: A Brief Survey. In Proceedings of the Twenty-Sixth World Wide Web Conference (WWW'17), pages 921-925.
[20] Jie Tang and Wendy Hal. Cross-domain Ranking via Latent Space Learning. In Proceedings of AAAI'17.

社會兼職

ACM TKDD執行主編;
IEEE TKDE、 ACM TIST、 IEEE TBD、 Science China編委;
Web Intelligence 2010: 程式委員會副主席 (2010);
KDD-LDMTA 2010, ICDM-LDMTA 2009-2010, WWW-SWSM 2008, CIKM-SWSM 2009: 聯合主席 (2008-2010);
KDD 2010, SIGIR 2009-2010, WWW 2010, ACL 2010, COLING 2010: 程式委員會委員 (2009-2010).

相關詞條

熱門詞條

聯絡我們