人物簡介
(1)教育背景:
1988.09-1992.06 南京化工學院,無機非金屬材料專業,工學學士學位。
2001.03-2008.11
電子科技大學,材料物理與化學專業,工學博士學位。
(2)工作履歷:
1992.07-1998.06 江蘇省陶瓷研究所
1998.09-2012.07 電子科技大學,講師
2012.07-至今 電子科技大學,副教授
學術成就
榮譽獎勵:
2011 國防科技進步一等獎
2006 國防科技進步二等獎
2004 教育部科技進步一等獎
研究領域:電子材料及器件、材料化學與工程
研究內容1:LTCC基板材料的製備與研究、LTCC微波介質陶瓷、鐵電陶瓷的性能研究、微波陶瓷的製備與研究、半導體陶瓷材料及器件。
研究內容2:低溫共燒陶瓷封裝材料、玻璃陶瓷材料、介質器件及工藝。
代表性論文
近期代表性論文:
1. Effect of Excess Li Content on the Microwave Dielectric Properties of the M-Phase of Li2O-Nb2O5-TiO2 Ceramics. Journal of Electronic Materials, 2014. 43(11): 3954-3958.
2. Effect of TiO2 and Al2O3 doping on sintering behavior and microwave dielectric properties of Ba4(Sm0.5Nd0.5) 28/3Ti18O54 ceramics. Journal of Materials Science: Materials in Electronics, 2014. 25(10): 4439-4443.
3. Sintering behavior and microwave dielectric properties of TiO2 added Ba4(Sm0.5Nd0.5) 28/3Ti18O54 ceramics with Li2O–Al2O3–B2O3 glass addition. Journal of Materials Science: Materials in Electronics, 2014. 25(11): 4750-4754.
4. Preparation and properties of low temperature sintered CaO-B2O3-SiO2 microwave dielectric ceramics using the solid-state reaction. Materials Science-Poland, 2013. 31(3): 404-409.
5. Densification and microwave properties of low-temperature co-fired CaO–B2O3–SiO2 glass-ceramic with La–B–Si additions. International Journal of Materials Research, 2013. 104(6): 606-608.
6. Phase structure and microwave dielectric properties of Mn-doped (1− x) ZrTi2O6–xZnNb2O6 (x= 0.13–0.53) ceramics. Journal of Materials Science: Materials in Electronics, 2013. 24(1): 418-422.
7. The influence of Cu substitution on the microwave dielectric properties of BaZn2Ti4O11 ceramics. Journal of Alloys and Compounds, 2013. 551: 463-467.
8. Phase structure and microwave dielectric properties of Zr (Zn1/3Nb2/3) xTi2− xO6 (0.2≤ x≤ 0.8) ceramics. Journal of Materials Science: Materials in Electronics, 2013. 24(5): 1475-1479.
9. Influence of Li-B-Si Additions on the Sintering and Microwave Dielectric Properties of Ba-Nd-Ti Ceramics. Journal of electronic materials, 2013. 42(12): 3519-3523.
10. Effects of La2O3–B2O3 on the flexural strength and microwave dielectric properties of low temperature co-fired CaO–B2O3–SiO2 glass–ceramic. Ceramics International, 2012. 38(7): 5551-5555.
11. Effects of ZnO and CeO2 additions on the microstructure and dielectric properties of Mn-modified (Bi0.5Na0.5)0.88 Ca0.12TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2012. 23(1): 309-314.
12. Improved High‐Q Microwave Dielectric Ceramics in CuO‐Doped BaTi4O9–BaZn2Ti4O11 System. Journal of the American Ceramic Society, 2012. 95(6): 1939-1943.
13. Microwave dielectric properties of BaO–2(1−x) ZnO–xNd2O3–4TiO2 ( x= 0–1.0) ceramics. Ceramics International, 2012. 38(1): 613-618.
14. The effect of Mn addition on phase development, microstructure and microwave dielectric properties of ZrTi2O6–ZnNb2O6 ceramics. Materials Letters, 2012. 80: 124-126.
15. Characterization and analysis of CaO–SiO2–B2O3 ternary system ceramics. Journal of Materials Science: Materials in Electronics, 2011. 22(4): 389-393.
16. Dielectric and microwave properties of ZrO2 doped CaO–SiO2–B2O3 ceramic matrix composites. Journal of Alloys and Compounds, 2011. 509(11): 4260-4263.
17. Preparation and properties of the barium borate glassy matrix composite materials containing fused silica and monoclinic zirconia. Journal of Alloys and Compounds, 2011. 509(14): 4848-4853.
18. Low temperature preparation of the Zn2SiO4 ceramics with the addition of BaO and B2O3. Journal of Materials Science: Materials in Electronics, 2011. 22(9): 1274-1281.
19. Thermal and dielectric properties of the LTCC composites based on the eutectic system BaO–Al2O3–SiO2–B2O3. Journal of Materials Science: Materials in Electronics, 2011. 22(3): 238-243.
20. Quantitative analysis of crystalline and remaining glass phases in CaO–B2O3–SiO2 ternary system glass ceramics. Journal of Alloys and Compounds, 2010. 506(2): 757-760.