基本介紹
個人經歷,研究領域,榮譽獲獎,科學研究,研究概括,研究進展,學術專著章節,部分期刊論文,
個人經歷
1997/09-2001/07 | 山東輕工業學院 化學工程系 | 本科 |
2001/09-2004/03 | 北京理工大學 材料科學研究中心 | 碩士 |
2004/09-2009/01 | 清華大學 材料科學與工程系 | 博士 |
2009/01-2011/01 | 清華大學 材料科學與工程系 | 博士後 |
2009/11-2010/08 | 日本九州大學 先導物質化學研究所 | 訪問研究 |
2011/01-2013/01 | 美國賓夕法尼亞州立大學 物理系 | 博士後 |
2013/02-2015/12 | 清華大學 材料學院 | 助理研究員、碩士生導師 |
2016/01-2019/12 | 清華大學 材料學院 | 助理教授、博士生導師 |
2019/12-2023/06 | 清華大學 材料學院 | 長聘副教授、博士生導師 |
2023/06-至今 | 清華大學 材料學院 | 長聘教授、博士生導師 |
以上參考
研究領域
低維碳基功能材料;環境友好材料與套用;清潔能源材料與器件
榮譽獲獎
2023 高等教育(本科)國家級教學成果獎(二等獎)
2023 清華大學年度教學優秀獎(2022年度)
2023 清華大學優秀博士學位論文指導教師
2022 中國材料研究學會科學技術獎(基礎研究)一等獎
2022 清華大學優秀博士學位論文指導教師禁微和
2021 清華大學教學成果一等獎
2021 清華大學先進工作者
2021 清華大學優秀黨建與思想政治工作者
2020 清華大學先進集體(材料科學與工程實驗教學中心)
2019 教育部高等學校科學研究優秀成果(自然科學)一等獎
2018 清華大學第八屆青年教師教學大賽(工科組)二等獎
2017 英國炭素學會Brian Kelly Award
2017 國家自然科學基金委優秀青年科學基金
2017 清華大學“挑戰杯”優秀指導教師
2017 清華大學-劉述禮育才獎
2017 清華大學優秀班主任二等獎
2016 北京市科技新星計畫
2014 清華大學學術新人獎
2010 Elsevier Carbon Journal Prize
2009 中國材料研討會(C-MRS)青年優秀論文獎
以上參考
科學研究
研究概括
主要從事碳基低維材料缺陷設計及性能調控研究,側重於晶格缺陷(摻雜原子、空位、界面等)的可控構築、原子級潤判連構型解析以及在高效能源存儲/轉換器件、超靈敏分子探測、高性能催化等領域的套用性能研究。撰寫英文學術專著3章,中文專著1章;在PNAS、Adv.Mater.、Adv. Funct. Mater.等期刊發表論文150餘篇;申請(授權)發明專利28項。主持完成/在研國家自然科學基金項目4項,中國航空工業集團公司委託項目2項;作為課題負責人承擔國家重點研發計畫項目1項,作為骨幹完成國家重大科學研究計畫項目2項。受邀在世界碳材料年度大會等國內外重要學台廈舟享術會議上作大蜜戀會報告/特邀報告40餘次,擔任第四/五/六/八屆國際石墨烯高峰論壇(深圳)“二維材料”分會主席。擔任Carbon Letters(Springer Nature)期刊Associate Editor,SmartMat(Wiley)期刊青年編委;Materials, ES Energy and Environment等期刊編委。
研究進展
2016年10月,呂瑞濤及合作者在二維薄膜的超靈敏聲壓感測器研究方面取得進展。研究人員首先使用電子束蒸鍍法,在二氧化矽/矽基底上蒸鍍了一定厚度的鉬薄膜,隨後在常壓進行硫化,得到了少層MoS2薄膜,再將所得薄膜轉移陶瓷插芯上,得到了基於不同層數MoS2的F-P感測器,基於少層MoS2組裝得到的F-P感測器具台舟潤有明顯的應力-應變回響以及非常高的探測靈敏度(89.3 nm/Pa),與傳統材料相比提高了近三個數量級。這對於開發超靈敏聲壓探測器提供了重要的啟示,也拓展了二維材料在環境和生物醫學等領域的套用;相關研究結果發表《Advanced Materials》( DOI: 10.1002/adma.201603266)上。
2021年12月,呂瑞濤研究組在碳基自支撐空氣電極設計及其在可充電鋅-空氣電池套用研究中取得重要進展。研究人員利用缺陷調控策罪婚宙略構築了一種Fe單原子-碳纖維膜柔性自支撐空氣電極,通過將金屬有機框架(MOF)材料和碳纖維複合及隨後的碳化、活化處理,調控了碳纖維膜的孔結構和Fe單原子催化位點的配位結構,極大提升了ORR/OER電船鴉探殼催化活性,在液態和柔性固態鋅-空氣電池中均表現出優異的性能:將Fe/SNCFs-NH3電催化劑作為鋅-空氣電池正極材料,組裝的液態鋅-空氣電池的峰功率密度高達255.84 mWcm,在1 mA cm電流密度下可穩定工作1000小時。當將其套用到固態鋅-空氣電池中,在平直/彎折/平直的狀態下依然表現出穩定的循環性能,在攜帶型和可穿戴電子產品領域展現出良好的套用前景。該工作還通過實驗表征和理論計算等方法,深入揭示了硫摻雜在調控ORR和OER催化活性中的重要作用,對雙功能電催化劑設計具有很好的參考價值。相關成果發表在《Advanced Materials》上。
學術專著章節
[1] Leping Yang, Yuchi Wan, Ruitao Lv*. Tailoring defects in 2D materials for electrocatalysis (Chapter 10 of the Book:"Defects in Two-Dimensional Materials"), 2022 Elsevier.
[2] 呂瑞濤*. 太陽能套用 (康飛宇等編著,"儲能用碳基納米材料"第8章), 2020 科學出版社.
[3] Simin Feng, Ruitao Lv, Mauricio Terrones, Maria Cristina dos Santos*. Interactions of Molecular Species with Graphene and Graphene Sensing (Chapter 17 of the Book: "Handbook of Graphene" Volume 6,(507–532)), 2019 Scrivener PublishingLLC.
[4] Florentino Lopez-Urias,RuitaoLv, Humberto Terrones,Mauricio Terrones*. Doped graphene: theory,synthesis, characterization and applications (Chapter 9 of the Book: "Graphene Chemistry: Theoretical Perspectives"), 2013, Wiley.
部分期刊論文
[1] Yang L, Zhang X, Yu L, Hou J, Zhou Z, Lv R*, AtomicFe-N4/C in Flexible Carbon Fiber Membrane as Binder-Free Air Cathodefor Zn-Air Batteries with Stable Cycling over 1000 h. Advanced Materials, 34: 2105410 (2022).
[2] Wan Y, Wang Z, Li J*, Lv R*, Mo2C-MoO2 Heterostructure Quantum Dots for Enhanced Electrocatalytic Nitrogen Reductionto Ammonia. ACS Nano, 16: 643-654(2022).
[3] Zhou L, Lv R*, Rational catalyst designand interface engineering for electrochemical CO2 reduction to high-valued alcohols. Journal of Energy Chemistry, 70: 310-331 (2022).
[4] Wan Y, Zhou H, Zheng M, Huang Z-H, Kang F, Li J*, Lv R*, Oxidation State Modulation of Bismuth for Efficient Electrocatalytic Nitrogen Reduction to Ammonia. Advanced Functional Materials, 31: 2100300 (2021).
[5] Ren H, Yu L, Yang L, Huang Z-H*, Kang F*, Lv R*, Efficient electrocatalytic overall water splitting and structural evolution of cobalt iron selenide by one-step electrodeposition. Journalof Energy Chemistry, 60:194-201 (2021).
[6] Lv Q, Wu X, Tan J, Liu B, Gan L, Li J*, Huang Z-H, Kang F, Lv R*, Ultrasensitive molecular sensing of few-layer niobium diselenide. Journal of Materials Chemistry A, 9: 2725 (2021).
[7] Wang C, Zhao N, Li B, Yu Q, Shen W, Kang F, Lv R*, Huang Z-H*, Pseudocapacitive porous hard carbon anodewith controllable pyridinic nitrogen and thiophene sulfur co-doping forhigh-power dual-carbon sodium ion hybrid capacitors. Journal of Materials Chemistry A, 9: 20483-20492 (2021).
[8] Fu M, Lv R*, Lei Y*, Terrones M*, Ultralight Flexible Electrodes of Nitrogen-Doped Carbon Macrotube Sponges forHigh-Performance Supercapacitors. Small, 17: 2004827 (2021).
[9] Zhang H, Hu M, Lv Q, Huang Z-H, Kang F, Lv R*, Advanced Materials for Sodium-Ion Capacitors with Superior Energy-PowerProperties: Progress and Perspectives. Small, 16: 1902843 (2020).
[10] Yang L, Yang X, Yu L, Lv R*, Defect Engineering of van der Waals Solids for Electrocatalytic Hydrogen Evolution.Chemistry-an Asian Journal, 15: 3682-3695(2020).
[11] Yang L, Hu M, Lv Q, Zhang H, Yang W*, Lv R*, Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity. Carbon, 163: 288-296 (2020).
[12] Hu M, Liu Z, Zhang H, Huang Z-H, Kang F, Lv R*, Defect engineering of vanadium pentoxide for efficient lithium-ionstorage. Electrochimica Acta,333: 135513 (2020).
[13] Hu M, Ju Z, Bai Z, Yu K, Fang Z, Lv R*, Yu G*, Revealingthe Critical Factor in Metal Sulfide Anode Performance in Sodium-Ion Batteries: An Investigation of Polysulfide Shuttling Issues. Small Methods, 4: 1900673 (2020).
[14] Zhang H, Hu M, Lv Q, Yang L, Lv R*, Monodispersenitrogen-doped carbon spheres with superior rate capacities for lithium/sodiumion storage. Electrochimica Acta,297: 365-371 (2019).
[15] Wan Y, Xu J, Lv R*, Heterogeneouselectrocatalysts design for nitrogen reduction reaction under ambient conditions. Materials Today, 27:69-90 (2019).
[16] Lu J, Zhao S, Fan S, Lv Q, Li J*, Lv R*, HierarchicalSnS/SnS2 heterostructures grown on carbon cloth as binder-free anodefor superior sodium-ion storage. Carbon, 148: 525-531 (2019).
[17] Hu M, Zhang H, Yang L, Lv R*, Ultrahigh ratesodium-ion storage of SnS/SnS2 heterostructures anchored on S-doped reduced graphene oxide by ion-assisted growth. Carbon, 143: 21-29 (2019).
[18] Zhou C, Lu J, Hu M, Huang Z-H, Kang F, Lv R*, High Areal Capacity Li-Ion Storage of Binder-Free Metal Vanadate/Carbon Hybrid Anode by Ion-Exchange Reaction. Small, 14: 1801832 (2018).
[19] Zhang Z, Wang Y, Leng X, Crespi VH*, Kang F*, Lv R*, Controllable Edge Exposure of MoS2 for Efficient Hydrogen Evolution with High Current Density. ACS Applied Energy Materials, 1: 1268-1275 (2018).
[20] Zhang H, Lv R*, Defect engineering of two-dimensional materials for efficient electrocatalysis. Journalof Materiomics, 4: 95-107(2018).
[21] Yang L, Wang W, Hu M, Shao J, Lv R*, Ultrahighrate binder-free Na3V2(PO4)3/carboncathode for sodium-ion battery. Journal of Energy Chemistry, 27: 1439-1445 (2018).
[22] Hu M, Zhou H, Gan X, Yang L, Huang Z-H, Wang D-W, Kang F, Lv R*, Ultrahigh rate sodium ion storage with nitrogen-doped expanded graphite oxide in ether-based electrolyte. Journalof Materials Chemistry A, 6:1582-1589 (2018).
[23] Zhou C, Fan S, Hu M, Lu J, Li J*, Huang Z-H, Kang F, Lv R*, High areal specific capacity of Ni3V2O8/carboncloth hierarchical structures as flexible anodes for sodium-ion batteries. Journalof Materials Chemistry A, 5:15517-15524 (2017).
[24] Yu F, Liu Q, Gan X, Hu M, Zhang T, Li C*, Kang F, Terrones M*, Lv R*, Ultrasensitive Pressure Detection of Few-Layer MoS2. Advanced Materials, 29: 1603266 (2017).
[25] Wang X, Gan X, Hu T, Fujisawa K, Lei Y, Lin Z, Xu B, Huang Z-H, Kang F,Terrones M*, Lv R*, Noble-Metal-Free Hybrid Membranes for Highly Efficient Hydrogen Evolution. Advanced Materials, 29: 1603617(2017).
[26] Ren H, Huang Z-H*, Yang Z, Tang S, Kang F, Lv R*, Facile synthesis of free-standing nickel chalcogenide electrodes foroverall water splitting. Journal of Energy Chemistry, 26: 1217-1222 (2017).
[27] Hu M, Yang L, Zhou K, Zhou C, Huang Z-H, Kang F, Lv R*, Enhanced sodium-ion storage of nitrogen-rich hard carbon by NaCl intercalation. Carbon, 122: 680-686(2017).
[28] Lv R, Robinson JA, Schaak RE, Sun D, Sun Y, Mallouk TE, Terrones M*, Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets.Accounts of Chemical Research, 48:56-64 (2015).
[29] Lv R, Chen G, Li Q, McCreary A, Botello-Mendez A, Morozov SV, Liang L, Declerck X,Perea-Lopez N, Culleni DA, Feng S, Elias AL, Cruz-Silva R, Fujisawa K, Endo M,Kang F, Charlier J-C, Meunier V, Pan M, Harutyunyan AR, Novoselov KS, TerronesM*, Ultrasensitive gas detection oflarge-area boron-doped graphene. PNAS, 112: 14527-14532 (2015).
[30] Lv R*, dos Santos MC, Antonelli C, Feng S, Fujisawa K, Berkdemir A, Cruz-Silva R,Elias AL, Perea-Lopez N, Lopez-Urias F, Terrones H, Terrones M*, Large-Area Si-Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing. Advanced Materials, 26: 7593-7599 (2014).
[31] Lv R, Cruz-Silva E, Terrones M*, Building Complex Hybrid Carbon Architectures by Covalent Interconnections: Graphene-Nanotube Hybrids and More. ACS Nano, 8: 4061-4069 (2014).
[32] Kovtyukhova NI*, Wang Y, Lv R, Terrones M, Crespi VH*, Mallouk TE*, Reversible Intercalation of Hexagonal Boron Nitride with Bronsted Acids. Journal of the American Chemical Society, 135: 8372-8381 (2013).
[33] Lv R, Li Q, Botello-Mendez AR, Hayashi T, Wang B, Berkdemir A, Hao Q, Elias AL,Cruz-Silva R, Gutierrez HR, Kim YA, Muramatsu H, Zhu J, Endo M, Terrones H,Charlier J-C*, Pan M*, Terrones M*, Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports, 2: 586 (2012).
[34] Lv R, Cui T, Jun M-S, Zhang Q, Cao A*, Su DS, Zhang Z, Yoon S-H, Miyawaki J,Mochida I, Kang F*, Open-Ended, N-Doped Carbon Nanotube-Graphene Hybrid Nanostructures as High-Performance Catalyst Support. Advanced Functional Materials, 21: 999-1006 (2011).
研究進展
2016年10月,呂瑞濤及合作者在二維薄膜的超靈敏聲壓感測器研究方面取得進展。研究人員首先使用電子束蒸鍍法,在二氧化矽/矽基底上蒸鍍了一定厚度的鉬薄膜,隨後在常壓進行硫化,得到了少層MoS2薄膜,再將所得薄膜轉移陶瓷插芯上,得到了基於不同層數MoS2的F-P感測器,基於少層MoS2組裝得到的F-P感測器具有明顯的應力-應變回響以及非常高的探測靈敏度(89.3 nm/Pa),與傳統材料相比提高了近三個數量級。這對於開發超靈敏聲壓探測器提供了重要的啟示,也拓展了二維材料在環境和生物醫學等領域的套用;相關研究結果發表《Advanced Materials》( DOI: 10.1002/adma.201603266)上。
2021年12月,呂瑞濤研究組在碳基自支撐空氣電極設計及其在可充電鋅-空氣電池套用研究中取得重要進展。研究人員利用缺陷調控策略構築了一種Fe單原子-碳纖維膜柔性自支撐空氣電極,通過將金屬有機框架(MOF)材料和碳纖維複合及隨後的碳化、活化處理,調控了碳纖維膜的孔結構和Fe單原子催化位點的配位結構,極大提升了ORR/OER電催化活性,在液態和柔性固態鋅-空氣電池中均表現出優異的性能:將Fe/SNCFs-NH3電催化劑作為鋅-空氣電池正極材料,組裝的液態鋅-空氣電池的峰功率密度高達255.84 mWcm,在1 mA cm電流密度下可穩定工作1000小時。當將其套用到固態鋅-空氣電池中,在平直/彎折/平直的狀態下依然表現出穩定的循環性能,在攜帶型和可穿戴電子產品領域展現出良好的套用前景。該工作還通過實驗表征和理論計算等方法,深入揭示了硫摻雜在調控ORR和OER催化活性中的重要作用,對雙功能電催化劑設計具有很好的參考價值。相關成果發表在《Advanced Materials》上。
學術專著章節
[1] Leping Yang, Yuchi Wan, Ruitao Lv*. Tailoring defects in 2D materials for electrocatalysis (Chapter 10 of the Book:"Defects in Two-Dimensional Materials"), 2022 Elsevier.
[2] 呂瑞濤*. 太陽能套用 (康飛宇等編著,"儲能用碳基納米材料"第8章), 2020 科學出版社.
[3] Simin Feng, Ruitao Lv, Mauricio Terrones, Maria Cristina dos Santos*. Interactions of Molecular Species with Graphene and Graphene Sensing (Chapter 17 of the Book: "Handbook of Graphene" Volume 6,(507–532)), 2019 Scrivener PublishingLLC.
[4] Florentino Lopez-Urias,RuitaoLv, Humberto Terrones,Mauricio Terrones*. Doped graphene: theory,synthesis, characterization and applications (Chapter 9 of the Book: "Graphene Chemistry: Theoretical Perspectives"), 2013, Wiley.
部分期刊論文
[1] Yang L, Zhang X, Yu L, Hou J, Zhou Z, Lv R*, AtomicFe-N4/C in Flexible Carbon Fiber Membrane as Binder-Free Air Cathodefor Zn-Air Batteries with Stable Cycling over 1000 h. Advanced Materials, 34: 2105410 (2022).
[2] Wan Y, Wang Z, Li J*, Lv R*, Mo2C-MoO2 Heterostructure Quantum Dots for Enhanced Electrocatalytic Nitrogen Reductionto Ammonia. ACS Nano, 16: 643-654(2022).
[3] Zhou L, Lv R*, Rational catalyst designand interface engineering for electrochemical CO2 reduction to high-valued alcohols. Journal of Energy Chemistry, 70: 310-331 (2022).
[4] Wan Y, Zhou H, Zheng M, Huang Z-H, Kang F, Li J*, Lv R*, Oxidation State Modulation of Bismuth for Efficient Electrocatalytic Nitrogen Reduction to Ammonia. Advanced Functional Materials, 31: 2100300 (2021).
[5] Ren H, Yu L, Yang L, Huang Z-H*, Kang F*, Lv R*, Efficient electrocatalytic overall water splitting and structural evolution of cobalt iron selenide by one-step electrodeposition. Journalof Energy Chemistry, 60:194-201 (2021).
[6] Lv Q, Wu X, Tan J, Liu B, Gan L, Li J*, Huang Z-H, Kang F, Lv R*, Ultrasensitive molecular sensing of few-layer niobium diselenide. Journal of Materials Chemistry A, 9: 2725 (2021).
[7] Wang C, Zhao N, Li B, Yu Q, Shen W, Kang F, Lv R*, Huang Z-H*, Pseudocapacitive porous hard carbon anodewith controllable pyridinic nitrogen and thiophene sulfur co-doping forhigh-power dual-carbon sodium ion hybrid capacitors. Journal of Materials Chemistry A, 9: 20483-20492 (2021).
[8] Fu M, Lv R*, Lei Y*, Terrones M*, Ultralight Flexible Electrodes of Nitrogen-Doped Carbon Macrotube Sponges forHigh-Performance Supercapacitors. Small, 17: 2004827 (2021).
[9] Zhang H, Hu M, Lv Q, Huang Z-H, Kang F, Lv R*, Advanced Materials for Sodium-Ion Capacitors with Superior Energy-PowerProperties: Progress and Perspectives. Small, 16: 1902843 (2020).
[10] Yang L, Yang X, Yu L, Lv R*, Defect Engineering of van der Waals Solids for Electrocatalytic Hydrogen Evolution.Chemistry-an Asian Journal, 15: 3682-3695(2020).
[11] Yang L, Hu M, Lv Q, Zhang H, Yang W*, Lv R*, Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity. Carbon, 163: 288-296 (2020).
[12] Hu M, Liu Z, Zhang H, Huang Z-H, Kang F, Lv R*, Defect engineering of vanadium pentoxide for efficient lithium-ionstorage. Electrochimica Acta,333: 135513 (2020).
[13] Hu M, Ju Z, Bai Z, Yu K, Fang Z, Lv R*, Yu G*, Revealingthe Critical Factor in Metal Sulfide Anode Performance in Sodium-Ion Batteries: An Investigation of Polysulfide Shuttling Issues. Small Methods, 4: 1900673 (2020).
[14] Zhang H, Hu M, Lv Q, Yang L, Lv R*, Monodispersenitrogen-doped carbon spheres with superior rate capacities for lithium/sodiumion storage. Electrochimica Acta,297: 365-371 (2019).
[15] Wan Y, Xu J, Lv R*, Heterogeneouselectrocatalysts design for nitrogen reduction reaction under ambient conditions. Materials Today, 27:69-90 (2019).
[16] Lu J, Zhao S, Fan S, Lv Q, Li J*, Lv R*, HierarchicalSnS/SnS2 heterostructures grown on carbon cloth as binder-free anodefor superior sodium-ion storage. Carbon, 148: 525-531 (2019).
[17] Hu M, Zhang H, Yang L, Lv R*, Ultrahigh ratesodium-ion storage of SnS/SnS2 heterostructures anchored on S-doped reduced graphene oxide by ion-assisted growth. Carbon, 143: 21-29 (2019).
[18] Zhou C, Lu J, Hu M, Huang Z-H, Kang F, Lv R*, High Areal Capacity Li-Ion Storage of Binder-Free Metal Vanadate/Carbon Hybrid Anode by Ion-Exchange Reaction. Small, 14: 1801832 (2018).
[19] Zhang Z, Wang Y, Leng X, Crespi VH*, Kang F*, Lv R*, Controllable Edge Exposure of MoS2 for Efficient Hydrogen Evolution with High Current Density. ACS Applied Energy Materials, 1: 1268-1275 (2018).
[20] Zhang H, Lv R*, Defect engineering of two-dimensional materials for efficient electrocatalysis. Journalof Materiomics, 4: 95-107(2018).
[21] Yang L, Wang W, Hu M, Shao J, Lv R*, Ultrahighrate binder-free Na3V2(PO4)3/carboncathode for sodium-ion battery. Journal of Energy Chemistry, 27: 1439-1445 (2018).
[22] Hu M, Zhou H, Gan X, Yang L, Huang Z-H, Wang D-W, Kang F, Lv R*, Ultrahigh rate sodium ion storage with nitrogen-doped expanded graphite oxide in ether-based electrolyte. Journalof Materials Chemistry A, 6:1582-1589 (2018).
[23] Zhou C, Fan S, Hu M, Lu J, Li J*, Huang Z-H, Kang F, Lv R*, High areal specific capacity of Ni3V2O8/carboncloth hierarchical structures as flexible anodes for sodium-ion batteries. Journalof Materials Chemistry A, 5:15517-15524 (2017).
[24] Yu F, Liu Q, Gan X, Hu M, Zhang T, Li C*, Kang F, Terrones M*, Lv R*, Ultrasensitive Pressure Detection of Few-Layer MoS2. Advanced Materials, 29: 1603266 (2017).
[25] Wang X, Gan X, Hu T, Fujisawa K, Lei Y, Lin Z, Xu B, Huang Z-H, Kang F,Terrones M*, Lv R*, Noble-Metal-Free Hybrid Membranes for Highly Efficient Hydrogen Evolution. Advanced Materials, 29: 1603617(2017).
[26] Ren H, Huang Z-H*, Yang Z, Tang S, Kang F, Lv R*, Facile synthesis of free-standing nickel chalcogenide electrodes foroverall water splitting. Journal of Energy Chemistry, 26: 1217-1222 (2017).
[27] Hu M, Yang L, Zhou K, Zhou C, Huang Z-H, Kang F, Lv R*, Enhanced sodium-ion storage of nitrogen-rich hard carbon by NaCl intercalation. Carbon, 122: 680-686(2017).
[28] Lv R, Robinson JA, Schaak RE, Sun D, Sun Y, Mallouk TE, Terrones M*, Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets.Accounts of Chemical Research, 48:56-64 (2015).
[29] Lv R, Chen G, Li Q, McCreary A, Botello-Mendez A, Morozov SV, Liang L, Declerck X,Perea-Lopez N, Culleni DA, Feng S, Elias AL, Cruz-Silva R, Fujisawa K, Endo M,Kang F, Charlier J-C, Meunier V, Pan M, Harutyunyan AR, Novoselov KS, TerronesM*, Ultrasensitive gas detection oflarge-area boron-doped graphene. PNAS, 112: 14527-14532 (2015).
[30] Lv R*, dos Santos MC, Antonelli C, Feng S, Fujisawa K, Berkdemir A, Cruz-Silva R,Elias AL, Perea-Lopez N, Lopez-Urias F, Terrones H, Terrones M*, Large-Area Si-Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing. Advanced Materials, 26: 7593-7599 (2014).
[31] Lv R, Cruz-Silva E, Terrones M*, Building Complex Hybrid Carbon Architectures by Covalent Interconnections: Graphene-Nanotube Hybrids and More. ACS Nano, 8: 4061-4069 (2014).
[32] Kovtyukhova NI*, Wang Y, Lv R, Terrones M, Crespi VH*, Mallouk TE*, Reversible Intercalation of Hexagonal Boron Nitride with Bronsted Acids. Journal of the American Chemical Society, 135: 8372-8381 (2013).
[33] Lv R, Li Q, Botello-Mendez AR, Hayashi T, Wang B, Berkdemir A, Hao Q, Elias AL,Cruz-Silva R, Gutierrez HR, Kim YA, Muramatsu H, Zhu J, Endo M, Terrones H,Charlier J-C*, Pan M*, Terrones M*, Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports, 2: 586 (2012).
[34] Lv R, Cui T, Jun M-S, Zhang Q, Cao A*, Su DS, Zhang Z, Yoon S-H, Miyawaki J,Mochida I, Kang F*, Open-Ended, N-Doped Carbon Nanotube-Graphene Hybrid Nanostructures as High-Performance Catalyst Support. Advanced Functional Materials, 21: 999-1006 (2011).