同旁內角

同旁內角

兩條直線被第三條直線所截,在截線同旁,且在被截線之內的兩角,叫做同旁內角。同旁內角,“同旁”指在第三條直線的同側;“內”指在被截兩條直線之間。兩直線平行,同旁內角互補。同旁內角互補,兩直線平行。

基本介紹

  • 中文名:同旁內角
  • 外文名:Consecutive Interior Angles
  • 定理:兩直線平行,同旁內角互補。 
  • 逆定理:同旁內角互補,兩直線平行。
  • 判定:兩直線平行,同旁內角互補。
  • 分類:數學
定義,特徵,定理以及逆定理,練習,區別,

定義

兩條直線被第三條直線所截,在截線同旁,且在被截線之內的兩角,叫做同旁內角。
同旁內角同旁內角
兩個角稱為同旁內角(Interior angles on the same side)。如圖:∠2與∠6 是同旁內角;
∠1與∠5也是同旁內角,而∠4和∠8,∠3和∠7則均不是同旁內角。

特徵

1.在截線同一側
2.夾在被截兩直線之間;
3.同旁內角截取圖呈“U”型。

定理以及逆定理

定理: 兩直線平行,同旁內角互補。 【互補角相加等於180°】
逆定理 : 平行線的判定:同旁內角互補,兩直線平行。

練習

1、在四邊形ABCD中,有沒有同旁內角?若有,有多少對同旁內角?
答案:有,共有四對同旁內角。
2、判斷:同一平面內,兩條平行線被第三條直線所截,所構成的同旁內角互補
答案:正確。

區別

同位角、內錯角、同旁內角是在兩條直線被第三條直線所截時形成的,(常說成三線八角)。
同旁內角
1、同位角的特徵。如圖,∠1_與∠5為同位角。分析它們的特點:都在兩條直線a、b的上方,且都在截線c的右側。由此得到同位角特徵:兩條直線被第三條直線所截時,都在兩條直線的同一方向,且在截線的同側的兩個角互為同位角。如圖中∠4與∠6,∠2與∠8,∠3與∠7具有此特點。
2、內錯角的特徵。如圖,∠2與∠6為內錯角,分析它們的特點:夾在兩條直線a、b的內部,且在截線c的左右兩側,由此得到內錯角的特徵:兩條直線被第三條直線所截時,夾在兩條直線的內部,且在截線兩側的兩個角互為內錯角。如圖1中:∠3與∠5具有此特點,也是一對內錯角。
3、同旁內角的特徵。如圖,∠2與∠5為同旁內角,分析它們的特點:夾在直線a、b的內部,且在截線c的同一側。由此得到同旁內角的特徵:兩條直線被第三條直線所截時,夾在兩條直線的內部,且在截線同側的兩個角互為同旁內角。如圖中:∠3與∠6有此特點,是一對同旁內角。

相關詞條

熱門詞條

聯絡我們