卞月珉

卞月珉

卞月珉,上海大學特聘教授,博士生導師,國家級高層次青年人才,上海市海外高層次人才。

基本介紹

  • 中文名:卞月珉
  • 外文名:Yuemin Bian
  • 國籍中國
  • 民族:漢族
  • 畢業院校:中國藥科大學、美國匹茲堡大學
  • 學位:博士
  • 職稱:教授
人物履歷,主要科研成果,主要研究方向,社會學術任職,代表性論文,

人物履歷

卞月珉2015年本科畢業於中國藥科大學;2020年於美國匹茲堡大學獲得博士學位,期間,與美國默克(默沙東)公司、強生公司JLABS合作開展在研管線的苗頭發現研究實踐;2021年-2024年在美國麻省理工和哈佛大學布羅德研究所從事新藥研發工作,擔任資深計算科學家。現為上海大學醫學院教授。

主要科研成果

長期致力於人工智慧藥物發現相關研究,通過開發並整合機器學習與深度學習算法,計算化學與計算生物學策略手段,加速臨床前早期藥物發現;
近五年,發表包括Nature, Cell在內的通訊/第一/共一SCI論文及專著15篇,H因子12,累計影響因子超過196;
主持國家級高層次海外人才基金項目、國家自然科學基金青年科學基金項目、上海市高層次海外人才基金項目等;
現為英國國家研究與創新署UKRI、智利國家研究與發展署ANID基金評審外籍專家,BMC Pharmacology and Toxicology雜誌客座編輯,Nature Communications、Briefings in Bioinformatics等雜誌審稿人。

主要研究方向

人工智慧藥物設計,計算化學,計算生物學,藥物化學,靶向藥物開發
專注於人工智慧和藥物發現的跨學科交叉,特別是針對小分子藥物的智慧型篩選與最佳化,初步構建了聚焦於新型靶標確證與苗頭發現的人工智慧藥物設計平台。
(1)以計算為橋樑完成癌症新靶點SHOC2-MRAS-PP1C全酶的結構解析與功能分析,為RAS病理相關癌症治療開創全新藥物靶標(Nature 2022);
(2)將大分子生物計算與結構生物學相融合,揭示HSV Polymerase耐藥性突變的動態結構性解釋,為針對耐藥病毒株的原創藥物發現提供支撐(Cell 2024);
(3)實現超高通量虛擬篩選和生成式配體結構從頭設計,結合藥物化學分子合成,針對新型靶點開展苗頭發現與先導最佳化。

社會學術任職

英國國家研究與創新署UK Research and Innovation (UKRI) 外籍基金評審
智利國家研究與發展部National Research and Development Agency (ANID) of the Ministry of Science, Technology, Knowledge and Innovation of Chile 外籍基金評審
BMC Pharmacology and Toxicology雜誌編委
Nature Communications、Briefings in Bioinformatics等雜誌審稿人

代表性論文

  1. Sundaresh Shankar*, Junhua Pan*, Pan Yang*, Yuemin Bian*, Gabor Oroszlan, Zishuo Yu, Purba Mukherjee, David J. Filman, James M. Hogle, Mrinal Shekhar, Donald M. Coen, Jonathan Abraham. Viral DNA polymerase structures reveal mechanisms of antiviral drug resistance. Cell, 187(20), 5572-5586 (2024).
  2. Jason J. Kwon*, Behnoush Hajian*, Yuemin Bian*, Lucy C. Young*, Alvaro J. Amor, James R. Fuller, Cara V. Fraley, Abbey M. Sykes, Jonathan So, Joshua Pan, Laura Baker, Sun Joo Lee, Douglas B. Wheeler, David L. Mayhew, Nicole S. Persky, Xiaoping Yang, David E. Root, Anthony M. Barsotti, Andrew W. Stamford, Charles K. Perry, Alex Burgin, Frank McCormick, Christopher T. Lemke, William C. Hahn, Andrew J. Aguirre. Structure-function analysis of the SHOC2-MRAS-PP1C holophosphatase complex. Nature 609, 408–415 (2022).
  3. Yue-min Bian, Xi-bing He, Yan-kang Jing, Li-rong Wang, Jun-mei Wang, Xiang-Qun Xie. Computational systems pharmacology analysis of cannabidiol: a combination of chemogenomics-knowledgebase network analysis and integrated in silico modeling and simulation. Acta Pharmacologica Sinica, 40.3 (2019): 374.
  4. Yuemin Bian, Jaden Jungho Jun, Jacob Cuyler, Xiang-Qun Xie. Covalent allosteric modulation: an emerging strategy for GPCR drug discovery, European Journal of Medicinal Chemistry (2020). 112690.
  5. Yuemin Bian, Xiang-Qun Xie. Artificial Intelligent Deep Learning Molecular Generative Modeling of Scaffold-Focused and Cannabinoid CB2 Target-Specific Small-Molecule Sublibraries. Cells 11.5 (2022): 915.
  6. Yuemin Bian, Junmei Wang, Jaden Jungho Jun, Xiang-Qun Xie. Deep convolutional generative adversarial network (dcGAN) models for the screening and design of small molecules targeting cannabinoid receptors. Molecular Pharmaceutics (2019), 16 (11), 4451-4460
  7. Yuemin Bian, Jason J Kwon, Cong Liu, Enrico Margiotta, Mrinal Shekhar, Alexandra E Gould. Target-driven machine learning-enabled virtual screening (TAME-VS) platform for early-stage hit identification. Frontiers in Molecular Biosciences (2023), 10, 174.
  8. Yuemin Bian, Yankang Jing, Lirong Wang, Shifan Ma, Jaden Jungho Jun, Xiang-Qun Xie. Prediction of orthosteric and allosteric regulations on cannabinoid receptors using supervised machine learning classifiers. Molecular Pharmaceutics (2019), 16, 6, 2605-2615
  9. Yuemin Bian, Xiang-Qun Xie. Computational Fragment-Based Drug Design: Current Trends, Strategies, and Applications. The AAPS Journal, (2018), 20(3): 59.
  10. Yuemin Bian, Zhiwei Feng, Peng Yang, Xiang-Qun Xie. Integrated in silico fragment-based drug design: case study with allosteric modulators on metabotropic glutamate receptor 5. The AAPS Journal, (2017), 19(4): 1235-1248.
  11. Yuemin Bian, Xiang-Qun Xie. Generative chemistry: drug discovery with deep learning generative models. J Mol Model 27, 71 (2021).

相關詞條

熱門詞條

聯絡我們