光學活性

光學活性

一個物質旋轉偏振光振動平面的能力稱為光學活性,而該物質被稱為光學活性物質。具有對映異構體的分子才有光學活性,可能包含手性碳原子,也可能不包含,包含手性碳原子的分子不一定具有光學活性,如內消旋體。這是由於物質折射或吸收左旋圓偏振光和右旋圓偏振光的程度不同而產生的一種現象。

基本介紹

  • 中文名:光學活性
  • 外文名:optical activity
  • 別名旋光性
  • 學科:物理,化學
定義,旋光發現發展,平面偏振發現,旋轉方向,旋轉證實,對映體,性狀定律,基本概念,偏振光,旋光度,比旋光度,對映異構體,外消旋體,非對映異構體,內消旋化合物,發現意義,

定義

分子的旋光性最早由十九世紀的Pasteur發現。他發現酒石酸的結晶有兩種相對的結晶型,成溶液時會使光向相反的方向旋轉,因而定出分子有左旋與右旋的不同結構。當普通光通過一個偏振透鏡尼科爾稜鏡時,一部分光就被擋住了,只有振動方向與稜鏡晶軸平行的光才能通過。這種只在一個平面上振動的光稱為平面偏振光,簡稱偏振光。偏振光的振動面在化學上習慣稱為偏振面。當平面偏振光通過手性化合物溶液後,偏振面的方向就被旋轉了一個角度。這種能使偏振面旋轉的性能稱為旋光性,也稱為光學活性。

旋光發現發展

正如法國物理學家馬呂於1808年所首先發現的那樣,反射光往往是部分平面偏振光(他利用牛頓關於光粒子極點的論點——這一點在解釋波動性方面有極大困難,但現在光子的概念說明這個論點有一定正確性——創立了偏振這一術語)。因此,配戴偏振片太陽鏡,可以使從建築物和汽車窗玻璃甚至從公路路面反射到眼睛的強烈陽光減弱到柔和的程度。

平面偏振發現

光波正常情況下在所有平面振動。尼科耳稜鏡只允許在一個平面內振動的光通過其餘的光都被反射掉。因此,透射光平面偏振光
1815年,法國物理學家畢奧發現,當平面偏振光通過石英晶體時,偏振面會轉動。也就是說,光以波浪形進入一個平面,而以波浪形從另一個平面射出。具有這種作用的物質就叫做旋光性物質。有些石英晶體能使振動平面按順時針方向轉動(右旋),而有些石英晶體能使 其按逆時針方向轉動(左旋)。畢奧還發現,有些有機化合物,例如樟腦和酒石酸,也具有同樣的作用。他認為,光束轉動的原因,很可能是由分子中原子排列的某種不對稱性造成的。但是,在以後的幾十年間,這種見解依然只是一種純理論的推測。

旋轉方向

1844年,巴斯德(當時他只有22歲)被這個有趣的問題給迷住了。他研究了兩種物質:酒石酸和外消旋酸(2,3-二羥基丁二酸)。二者雖然具有相同的化學成分,但酒石酸能使偏振光的振動平面轉動,而外消旋酸卻不能。巴斯德猜想,或許能夠證明,酒石酸鹽的晶體是不對稱的,而外消旋酸鹽的晶體是對稱的。出乎他的意料,通過在顯微鏡下觀察這兩組鹽的晶體,他卻發現二者都是不對稱的。不過,外消旋酸鹽晶體具有兩種形式的不對稱性:一半晶體與酒石酸鹽晶體的形狀相同,而另一半則為鏡像。也就說,外消旋酸鹽的晶體,有一半是左旋的,一半是右旋的。

旋轉證實

巴斯德煞費苦心地將左旋的和右旋的外消旋酸鹽晶體分開,然後分別製成溶液,並讓光束通過每一種溶液。果然,與酒石酸晶體有著相同不對稱性的晶體,其溶液像酒石酸鹽那樣使偏振光的振動面發生轉動,而轉動角度也相同。這些晶體就是酒石酸鹽。另一組晶體的溶液則使偏振光的振動面向相反方向轉動,轉動角度相同。由此可見,原外消旋酸鹽之所以沒有顯示出旋光性,是因為這兩種對立的傾向互相抵消了。
接著,巴斯德又在這兩種溶液中加入氫離子,使這兩類外消旋酸鹽再變為外消旋酸。(順便說一句,鹽是酸分子中1個或數個氫離子被鉀或鈉這類帶正電的離子取代後生成的化合物)。他發現,這兩類外消旋酸都具有旋光性,其中一類使偏振光轉動的方向與酒石酸相同(因為它就是酒石酸),而另一類使偏振光轉動的方向則與之相反。

對映體

以後又發現了許多對這樣的鏡像化合物即對映體(源於希臘語,意為“相反的形狀”)。1863年,德國化學家維斯利采努斯發現,乳酸(酸牛奶中的酸)能形成這樣的化合物。他進一步證明,除了對偏 振光所產生的作用不同外,這兩種乳酸的其他性質完全一樣。後來證實,這一點對於各種鏡像化合物是普遍成立的。

性狀定律

直到1874年,即畢奧死後的第12年,才最後找到答案。兩位年輕的化學家——一位是名叫范托夫的22歲的荷蘭人,另一位是名叫勒貝爾的27歲的法國人——各自獨立地提出了關於碳的價鍵的新理論,從而解答了鏡像分子的構成問題。(自此以後,范托夫畢生從事溶液中的物質性狀的研究,並證明了支配液體性狀的定律類似於支配氣體性狀的定律。由於這項成就,他於1901年成為第一個獲得諾貝爾化學獎的人。)
凱庫勒把碳原子的4個價鍵統統畫在同一個平面內,這並不一定是因為碳鍵確實是這樣排列的,而只是因為把它們畫在一張平展的紙上比較簡便而已。范托夫和勒貝爾則提出了一個三維模型。在這個模型中,他們將4個價鍵分配在兩個互相垂直的平面內,每個平面各有兩個價鍵。描繪這一模型的最好辦法,是構想4個價鍵中的任意3個價鍵作為腿支撐著碳原子,而第4個價鍵則指向正上方。如果假定碳原子位於正四面體(4個面都是正三角形的幾何圖形)的中心,那么,這4個價鍵就指向該正四面體的4個頂點。因此,這個模型被稱之為碳原子的正四面體模型。

基本概念

偏振光

普通光中各種波長的光在垂直於前進方向的各個平面內振動,振動平面和光波前進方向構成的平面叫振動面。光的振動面只限於某一固定方向的,叫做平面偏振光,簡稱偏振光(polarized light)。

旋光度

當平面偏振光通過盛有旋光性化合物的旋光管後,偏振面就會被旋轉(向右或向左)一個角度,這時偏振光就不能通行無阻的穿過與起偏鏡棱軸相平行的檢偏鏡。只有檢偏鏡也旋轉(向右或向左)相同的角度α,旋轉了的平面偏振光才能完全通過。觀察檢偏鏡上攜帶的刻度盤所旋轉的角度,即為該旋光性物質的旋光度偏振面被旋光性物質所旋轉的角度叫旋光度。用α表示。

比旋光度

樣品管的長度、溶劑的種類、溶液的濃度、溫度及所用光的波長等因素對特定物質的旋光度的數值都有影響。為了使其旋光度成為特徵物理常數,通常用1dm長的旋光管,待測物質的濃度為1g/ml,用波長為589nm的鈉光(D線)條件下,所測得的旋光度,稱為比旋光度。

對映異構體

一對對映異構體是一對在空間上不能重疊的鏡像異構體,即手性分子。

外消旋體

一對對映體的等量混合物稱為外消旋體(racemic mixture 或 racemate)。通常用(±) 或 dl 表示。外消旋體是混合物。
一對對映體具有相同的熔點、沸點、密度、pKa, 兩者的比旋光度大小相等,方向相反。外消旋體的物理性質與單一對映體有些不同,它不具有旋光性,熔點、密度和溶解度等常有差異。但沸點、 pKa與純對映體相同。

非對映異構體

彼此不成鏡像關係的立體異構體互為非對映異構體。非對映體具有不同的物理性質。如沸點、溶解度、旋光性等都不相同。
兩個含有多個手性碳原子的手性化合物,如果它們除一個手性碳原子的構型不同,其他結構完全相同,則它們彼此為差向異構體。差向異構體是一種非對映異構體。

內消旋化合物

部分有機分子雖然有手性中心,,但由於手性中心的數量及連線方式不同,作為分子整體來說是非手性的,這樣的物質為內消旋化合物。
內消旋化合物是純淨物,不具有旋光性。

發現意義

現在看來,潛心研究旋光性的細節具有重要意義,決不是在好奇心的驅使下所做的徒勞無益的工作。說來也巧,活機體中幾乎所有的化合物都含有不對稱的碳原子。而且,活機體總是只利用化合物的兩種鏡像形態中的一種。另外,類似的化合物一般屬於同一種系列。例如,在活組織中發現的所有單糖實際上都屬於D系列,而所有的胺基酸(組成蛋白質的基本單位,甘氨酸除外)屬於L系列。
1955年,荷蘭化學家比傑沃特終於確定了什麼樣的結構會使偏振光左旋,什麼樣的結構會使偏振光右旋。人們這才知道,在左旋形態和右旋形態的命名上,E·費歇爾只不過是碰巧猜對了而已。

相關詞條

熱門詞條

聯絡我們