用掃描邁克耳孫干涉儀對光譜進行分光測量的儀器。在原理圖中,干涉儀臂上的可調平面鏡M2可沿光軸方向作掃描運動,為 M2的位移值。這時, 探測器接收到的是一種調製信號F(x),它同入射光的光譜強度分布B(σ)之間的關係是。
基本介紹
- 中文名:傅立葉變換分光儀
- 外文名:Fourier transfom spectrometer
簡介,套用,測量太陽光譜的譜線輪廓,
簡介
Fourier transfom spectrometer
式中σ 為波數,等於波長λ的倒數,F(0)為M1和M2之間光程差等於零時的出射光強度。[2F(x)-F(0)]稱為干涉圖,等於。這在數學上稱為B(σ)的傅立葉變換,這種分光儀名稱就是由此而來的。
邁克耳孫早在十九世紀末就提出這種分光儀的工作原理,但直到二十世紀六十年代,隨著計算機技術的發展,能快速地進行傅立葉變換數學運算以後,傅立葉分光儀才得以實現。在觀測過程中,探測器在平面鏡M2的有限個掃描位置上取樣,測得的信號輸給電子計算機,並依次存儲。M2完成一個掃描周期的運動後,計算機對干涉圖[2F(x)-F(0)]進行傅立葉逆變換的數學運算,輸出信號便正比於光譜的強度分布B(σ)。
套用
在天文學中,對大行星的紅外觀測獲得許多重要的成果。與用紅外檢測器沿波長掃描的色散(稜鏡、光柵)分光儀相比,信噪比可提高(N/8)1/2倍。此處N是傅立葉變換分光儀同時測量的光譜單元數。
例如,在某些套用中,N可高達106,測量精度和靈敏度可以提高350倍。
與色散分光儀相比,傅立葉分光儀還有其他優點:能用相當大的口徑接收入射光,不象狹縫那樣嚴重限制視場,因而聚光能力得到很大提高。此外,它的分辨本領和測量精度較高,尺寸小,重量輕,結構緊湊,可以直接裝在望遠鏡上。
測量太陽光譜的譜線輪廓
傅立葉變換分光儀還用於可見光譜區,測量太陽光譜的譜線輪廓。套用於可見光波段的,是一種精度極高的光學儀器。這種儀器要求採用多種措施保證平面鏡M2在長掃描距離(1~2米)內運動的平穩性,和取樣間距的高精度(幾埃),並需配備大容量、高速度電子計算機,才能完成傅立葉變換的數學運算。