偏微分方程導論

偏微分方程導論

《偏微分方程導論》是2011年1月1日世界圖書出版公司出版的圖書,作者是(美國)福蘭德(GeraldB.Folland)。

基本介紹

  • 書名:偏微分方程導論
  • 原版名稱: introduction to partial differential equations 2nd ed
  • ISBN:9787510029714, 7510029716
  • 頁數: 324
  • 出版社:世界圖書出版公司
  • 出版時間:2011年1月1日
  • 裝幀:平裝
  • 開本:24
內容簡介,作者簡介,目錄,

內容簡介

《偏微分方程導論(第2版)(英文版)》內容簡介:In1975Igaveacourseinpartialdifierentialequations(PDE)attheUni-versityofWashingtontoanaudienceconsistingofgraduatestudentswhohadtakenthestandardfirst-yearanalysiscoursesbutwhohad1ittleback-groundinPDE.Accordingly.itfocusedonbasicclassicalresultsinPDEbutaimedinthedirectionoftherecentdevelopmentsandmadefairlyft。eeuseofthetechniquesofrealandcomplexanalysis.Theroughlypolishednotesforthatcourseconstitutedthefirsteditionofthisbook,whichhasenjoyedsomeSUCCESSforthepasttwodecadesasa“modern”introductiontoPDE.Fromtimetotime,however,myconscienceha.Snaggedmetomakesomerevisions——tocleansomethingsup,addmoreexercises,andincludesomematerialonpseudodifferentialoperators.

作者簡介

作者:(美國)福蘭德(GeraldB.Folland)

目錄

PREFACE
Chapter 0
PRELIMINARIES
A.Notations and Definitions
B.Results from Advanced Calculus
C.Convolutions
D.The Fourier Transform
E.Distributions
F.Compact Operators
Chapter 1
LOCAL EXISTENCE THEoRy
A.Basic Concepts
B.Real First Order Equations
C.The General Cauchy Problem
D.The Cauchy-Kowalevski Theorem
E.Local Solvability:the Lewy Example
F.Constant-Coefficient Operators:Fundamental Solutions
Chapter 2
THE LAPLACE oPERATOR
A.Symmetry Properties of the Laplacian
B.Basic Properties of Harmonic Funotions
C.The Fundamental Solution
D.The Dirichlet and Neumann Problems
E.The Green’S Function
F.Dirichlet’S Principle
G.The Dirichlet Problem in a Half-Space
H.The Dirichlet Problem in a Ball
I.More about Harmonic Functions
Chapter 3
LAYER PoTENTIALS
A.The Setup
B.Integral Operators
C.Double Layer Potentials
D.Single Layer Potentials
E.Solution of the Problems
F.Further Remarks
Chapter 4
THE HEAT oPERAToR
A.The Gaussian Kernel
B.Funotions of the Laplacian
C.The Heat Equation in Bounded Domains
Chapter 5
THE WAVE oPERAToR
A.The Cauchy Problem
B.Solution of the Cauchy Problem
C.The Inhomogeneous Equation
D.Fourier Analysis of the Wave Operator
E.The Wave Equation in Bounded Domains
F.The Radon Transform
Chapter 6
THE L2 THEOR.Y oF DERIVATIVES
A.Sobolev Spaces on R
B.Further Results on Sobolev Spaces
C.Local Regularity of Elliptic Operators
D.Constant-Coefficient Hypoelliptic Operators
E.Sobolev Spaces on Bounded Domains
Chapter 7
ELLIPTIC BoUNDARY VALUE PRoBLEMS
A.Strong Ellipticity
B.On Integration by Parts
C.Dirichlet Forms and Boundary Conditions
D.The Coercive Estimate
E.Existence,Uniqueness,and Eigenvalues
F.Regularity at the Boundary:the Second Order Case
G.Further Resuits and Techniques
H.Epilogue:the Return of the Green’S Function
Chapter 8
PSEUDODIFFERENTIAL OPERATORS
A.Basic Definitions and Properties
B.Kernels of Pseudodifferential Operators
C.Asymptotic Expansions of Symbols
D.Amplitudes,Adjoints,and Products
E.Sobolev Estimates
F.Elliptic Operators
G.Introduction to Microlocal Analysis
H.Change of Coordinates
BIBLIOGRAPHY
INDEX OF SYMBOLS
INDEX

相關詞條

熱門詞條

聯絡我們