代占武

代占武

代占武,男,博士,研究員,博士生導師。

基本介紹

  • 中文名:代占武
  • 出生地:山東省濰坊
  • 出生日期:1979年12月
  • 畢業院校:山東農業大學、中國農業大學、法國阿維尼翁大學
  • 主要成就:2019年在Trends Plant Sci, Plant J, J Exp Bot, Tree Physiol 等刊物發表SCI論文40餘篇
  • 性別:男
  • 職稱:研究員
  • 學位/學歷:本科、博士、碩士
人物經歷,主要成就,科研成就,研究方向,科研項目,發表論文,

人物經歷

1979年12月出生於山東省濰坊市。
2003年在山東農業大學獲得學士學位。
2005年在中國農業大學獲得碩士學位。
2008年12月和2009年2月在中國農業大學和和法國阿維尼翁大學獲得博士學位。
2009年3月至2010年2月在法國農業科學研究院(INRA)克萊蒙分院進行博士後研究。
2010年3月至2019年3月在法國農業科學研究院(INRA)波爾多分院、波爾多葡萄與葡萄酒研究所(ISVV)任副研究員。
2019年4月到中國科學院植物研究所工作。

主要成就

科研成就

Trends Plant Sci, Plant J, J Exp Bot, Tree Physiol 等刊物發表SCI論文40餘篇。

研究方向

(1)葡萄種質與環境因子互作對果實品質調控機理研究
(2)數學模型輔助的分子標記鑑定、候選基因發掘及基因功能分析
(3)數學模型輔助的果實品質精準調控技術研發

科研項目

[1] “光對葡萄光契約化物分配和果實品質的調控機制”,國家重點研發計畫子課題(2019. 05-2022.12),資助金額 67萬元;主持
[2]“碳供應和脫落酸聯合處理對葡萄果實中糖-花色苷平衡的調控機理研究”,國家自然基金面上項目(2021.01-2024.12),資助金額 58萬元;主持
[3]“賀蘭山東麓風土條件下釀酒葡萄品質形成機理研究”, 國家自然基金區域創新聯合基金重點項目(2021.01-2024.12),資助金額 257萬元;主持

發表論文

2021
[1] Chen J, Beauvoit B, Génard M, Colombié S, Moing A, Vercambre G, Gomes E, Gibon Y, Dai Z+: Modelling predicts tomatoes can be bigger and sweeter if biophysical factors and transmembrane transports are fine-tuned during fruit development. 2021. New Phytologist. in press, https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17260
[2] Dayer S, Herrera JC, Dai Z, Burlett R, Lamarque LJ, Delzon S, Bortolami G, Cochard H, 2021. Gambetta GA (2020) Nighttime transpiration represents a negligible part of water loss and does not increase the risk of water stress in grapevine. Plant Cell and Environment 44:387-398
[3] Suter B, Destrac Irvine A, Gowdy M, Dai Z, 2021. van Leeuwen C: Adapting wine grape ripening to global change requires a multi-trait approach. Frontiers in Plant Science 12: 624867
2020
[4] Dayer S, Herrera JC, Dai Z, Burlett R, Lamarque LJ, Delzon S, Bortolami G, Cochard H, Gambetta GA .2020. The sequence and thresholds of leaf hydraulic traits underlying grapevine varietal differences in drought tolerance. Journal of Experimental Botany 71 (14):4333-4344.
[5] Cakpo CB, Vercambre G, Baldazzi V, Roch L, Dai Z, Valsesia P, Memah M-M, Colombié S, Moing A, Gibon Y, Genard M. 2020. Model-assisted comparison of sugar accumulation patterns in ten fleshy fruits highlights differences between herbaceous and woody species. Annals of Botany. 126:455-470.
[6] Roch L, Prigent S, Klose H, Cakpo C-B, Beauvoit B, Deborde C, Fouillen L, van Delft P, Jacob D, Usadel B, Dai Z, Genard M, Vercambre G, Colombié S, Moing A, Gibon Y .2020. Biomass composition explains fruit relative growth rate and discriminates climacteric from non-climacteric species. Journal of Experimental Botany. 71:5823-5836.
[7] Ren C, Guo Y, Kong J, Lecourieux F, Dai Z, Li S, Liang Z. 2020. Knockout of VvCCD8 gene in grapevine affects shoot branching. BMC Plant Biology 20 (1):47. doi:10.1186/s12870-020-2263-3.
2019
[8] Suter B, Triolo R, Pernet D, Dai Z, Van Leeuwen C. 2019. Modeling stem water potential by separating the effects of soil water availability and climatic conditions on water status in grapevine (Vitis vinifera L.). Frontiers in Plant Science 10:1485, doi:10.3389/fpls.2019.01485
[9] Roch L, Dai Z, Gomès E, Bernillon S, Wang J, Gibon Y, Moing A. 2019. Fruit salad in the lab: Comparing botanical species to help deciphering fruit primary metabolism. Frontiers in Plant Science, In press, doi: 10.3389/fpls.2019.00836.
[10] Jing W, Julie D, Ghislaine H, Sabine G, Dai Z, Laurence G, Serge D, Philippe D, Cécile T, Philippe P. 2019. The effects of a moderate grape temperature increase on berry secondary metabolites. Oeno One 53, 2.
[11] Zhu J, Génard M, Poni S, Gambetta GA, Vivin P, Vercambre G, Trought MCT, Ollat N, Delrot S, Dai Z+. 2019. Modelling grape growth in relation to whole-plant carbon and water fluxes. Journal of Experimental Botany, 70, 2505-2521.
2018
[12] Jiang J, Xi H, Dai Z, Lecourieux F, Yuan L, Liu X, Patra B, Wei Y, Li S, Wang L. 2018. VvWRKY8 represses stilbene synthase gene through direct interaction with VvMYB14 to control resveratrol biosynthesis in grapevine. Journal of Experimental Botany, 70, 715-729.
[13] Beauvoit B, Belouah I, Bertin N, Cakpo CB, Colombié S, Dai Z, Gautier H, Génard M, Moing A, Roch L, Vercambre G, Gibon Y. 2018. Putting primary metabolism into perspective to obtain better fruits. Annals of Botany 122, 1-21.
[14] Noronha H, Silva A, Dai Z, Gallusci P, Rombolà AD, Delrot S, Gerós H. 2018. A molecular perspective on starch metabolism in woody tissues. Planta 248, 559-568.
[15] Soubeyrand E, Colombié S, Beauvoit B, Dai Z, Cluzet S, Hilbert G, Renaud C, Maneta-Peyret L, Dieuaide M, Mérillon J-M, Gibon Y, Delrot S, Gomès E. 2018. Constraint-based modeling highlights cell energy, redox status and α-ketoglutarate availability as metabolic drivers for anthocyanin accumulation in grape cells under nitrogen limitation. Frontiers in Plant Science, 9:421. (doi: 10.3389/fpls.2018.00421).
[16] Zhu J, Dai Z+, Vivin P, Gambetta GA, Henke M, Peccoux A, Ollat N, Delrot S. 2018. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchanges Annals of Botany, 121:833-848 (doi: 10.1093/aob/mcx1141).
[17] Peccoux A, Loveys B, Zhu J, Gambetta GA, Delrot S, Vivin P, Schultz HR, Ollat N+, Dai Z+. 2018. Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. Tree Physiology, 38, 1026-1040.
[18] Poni S, Gatti M, Palliotti A, Dai Z, Duchêne E, Truong T-T, Ferrara G, Matarrese AMS, Gallotta A, Bellincontro A, Mencarelli F, Tombesi S. 2018. Grapevine quality: A multiple choice issue. Scientia Horticulturae, 234:445-462.
2017
[19] Gallusci P*+, Dai Z*+, Génard M, Gauffretau A, Leblanc-Fournier N, Richard-Molard C, Vile D, Brunel-Muguet S*+. 2017. Epigenetics for plant improvement: Current knowledge and modeling avenues. Trends in Plant Science 22, 610-623.
[20] Guan L, Wu B, Hilbert G, Li S, Gomès E, Delrot S, Dai Z+. 2017. Cluster shading modifies amino acids in grape (Vitis vinifera L.) berries in a genotype- and tissue-dependent manner. Food Research International 98, 2-9.
[21] Silva A, Noronha H, Dai Z, Delrot S, Gerós H. 2017. Low source–sink ratio reduces reserve starch in grapevine woody canes and modulates sugar transport and metabolism at transcriptional and enzyme activity levels. Planta 246, 525-535.
[22] Vivin P, Lebon é, Dai Z, Duchêne E, Marguerit E, García de Cortázar-Atauri I, Zhu J, Simonneau T, van Leeuwen C, Delrot S, Ollat N. 2017. Combining ecophysiological models and genetic analysis: a promising way to dissect complex adaptive traits in grapevine. Oeno One 51, 181-189.
[23] Cochetel N, Escudie F, Cookson SJ, Dai Z, Vivin P, Bert P-F, Munoz MS, Delrot S, Klopp C, Ollat N, Lauvergeat V. 2017. Root transcriptomic responses of grafted grapevines to heterogeneous nitrogen availability depend on rootstock genotype. Journal of Experimental Botany 68, 4339-4355.
2016
[24] Dai Z, Wu H, Baldazzi V, van Leeuwen C, Bertin N, Gautier H, Wu B, Duchêne E, Gomès E, Delrot S, Lescourret F, Génard M. 2016. Inter-species comparative analysis of components of soluble sugar concentration in fleshy fruits. Frontiers in Plant Science 7, 649.
[25] Guan L*, Dai Z*, Wu B-H, Wu J, Merlin I, Hilbert G, Renaud C, Gomès E, Edwards E, Li S-H, Delrot S. 2016. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries. Planta 243, 23-41.
[26] Martínez-Lüscher J, Kizildeniz T, Vucetic V, Dai Z, Luedeling E, van Leeuwen C, Gomès E, Pascual I, Juan José I, Morales F, Delrot S. 2016. Sensitivity of grapevine phenology to water availability, temperature and CO2 concentration. Frontiers in Environmental Science 4, 48.
2015
[27] Dai Z*, Plessis A*, Vincent J, Duchateau N, Besson A, Dardevet M, Prodhomme D, Gibon Y, Hilbert G, Pailloux M, Ravel C, Martre P. 2015. Transcriptional and metabolic alternations rebalance wheat grain storage protein accumulation under variable nitrogen and sulfur supply. The Plant Journal 83, 326-343.
[28] Bobeica N, Poni S, Hilbert G, Renaud C, Gomès E, Delrot S, Dai Z. 2015. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines. Frontiers in Plant Science 6, 382.
[29]Berdeja M, Nicolas P, Kappel C, Dai Z, Hilbert G, Peccoux A, Lafontaine M, Ollat N, Gomès E, Delrot S. 2015. Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture Research 2, 15012.
[30] Su L, Dai Z, Li S, Xin H. 2015. A novel system for evaluating drought-cold tolerance of grapevines using chlorophyll fluorescence. BMC Plant Biology 15, 82.
[31] Vincent J, Martre P, Gouriou B, Ravel C, Dai Z, Petit J-M, Pailloux M. 2015. RulNet: A Web-Oriented Platform for Regulatory Network Inference, Application to Wheat-Omics Data. PLoS ONE 10, e0127127.
2014
[32] Dai ZW, Meddar M, Renaud C, Merlin I, Hilbert G, Delrot S, Gomès E. 2014. Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation. Journal of Experimental Botany 65, 4665-4677.
[33] Prudent M*, Dai ZW*, Génard M, Bertin N, Causse M, Vivin P. 2014. Resource competition modulates the seed number-fruit size relationship in a genoty pedependent manner: a modeling approach in grape and tomato. Ecological Modelling, 290, 54-64, doi: 10.1016/j.ecolmodel.2013.10.023
[34] Berdeja M, Hilbert G, Dai ZW, Lafontaine M, Stoll M, Schultz HR, Delrot S. 2014. Effect of water stress and rootstock genotype on Pinot noir berry composition. Australian Journal of Grape and Wine Research, 20, 409-421.
[35] Guan L, Li J-H, Fan P-G, Li S-H, Fang J-B, Dai Z-W, Delrot S, Wang L-J, Wu B-H. 2014. Regulation of anthocyanin biosynthesis in tissues of a teinturier grape cultivar under sunlight exclusion. American Journal of Enology and Viticulture, 65, 363-374.
[36] Kuhn N, Guan L, Dai ZW, Wu B-H, Lauvergeat V, Gomès E, Li S-H, Godoy F, Arce-Johnson P, Delrot S. 2014. Berry ripening: recently heard through the grapevine. Journal of Experimental Botany65, 4543-4559.
[37] Xi H, Ma L, Liu G, Wang N, Wang J, Wang L, Dai Z, Li S, Wang L. 2014. Transcriptomic analysis of grape (Vitis vinifera L.) leaves after exposure to ultraviolet C irradiation. PLoS ONE 9, e113772.
2013
[38] Dai ZW, Léon C, Feil R, Lunn JE, Delrot S, Gomès E. 2013. Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit. Journal of Experimental Botany 64, 1345-1355.
[39] Vincent J, Dai Z, Ravel C, Choulet F, Mouzeyar S, Bouzidi MF, Agier M, Martre P. 2013. dbWFA: a web-based database for functional annotation of Triticum aestivum transcripts. Database 2013.
2012
[40] Liu G-T, Wang J-F, Cramer G, Dai ZW, Duan W, Xu H-G, Wu B-H, Fan P-G, Wang L-J, Li S-H. 2012. Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biology 12, 174.
2011
[41] Dai ZW, Ollat N, Gomès E, Decroocq S, Tandonnet J-P, Bordenave L, Pieri P, Hilbert G, Kappel C, van Leeuwen C, Vivin P, Delrot S. 2011. Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: a review. American Journal of Enology and Viticulture 62, 413-425.
2010及以前
[42] Dai ZW, Vivin P, Barrieu F, Ollat N, Delrot S. 2010. Physiological and modelling approaches to understand water and carbon fluxes during grape berry growth and quality development: a review. Australian Journal of Grape and Wine Research 16, 70-85.
[43] Dai ZW, Génard M, Li SH, Vivin P. 2009. Analyzing the functional association among seed traits, berry growth and chemical composition in Cabernet-Sauvignon berry (Vitis vinifera L.) using a mathematical growth function. Journal International des Sciences de la Vigne et du Vin 43, 35-44.
[44] Dai ZW, Vivin P, Robert T, Milin S, Li SH, Génard M. 2009. Model-based analysis of sugar accumulation in response to source-sink ratio and water supply in grape (Vitis vinifera) berries. Functional Plant Biology36, 527-540.
[45] Yuan JH*, Dai ZW*, Zhao JY, Li SH. 2009. Distribution of newly fixed 14C-photoassimilate under deficit irrigation and half-root stress in peach trees. Plant Science177, 691-697. (co-first author)
[46] Zhao JY, Dai ZW, Li SH, Kong Y. 2008. Artificially-induced leaf nitrate accumulation affects photosynthesis in micropropagated apply plants with different water supply. Journal of Horticultural Science & Biotechnology 83, 435-440.
[47] Dai ZW, Wang LJ, Zhao JY, Fan PG, Li SH. 2007. Effect and after-effect of water stress on the distribution of newly-fixed 14C-photoassimilate in micropropagated apple plants. Environmental and Experimental Botany60, 484-494.
[48] Zhao JY, Wang LJ, Fan PG, Dai ZW, Li SH. 2006. Effect of half and whole root drying on photosynthesis, nitrate concentration, and nitrate reductase activity in roots and leaves of micropropagated apple plants. Journal of the American Society for Horticultural Science 131, 709-715.

相關詞條

熱門詞條

聯絡我們