基本介紹
- 中文名:二階電路
- 類型:線性電路
- 組成部分:動態元件
- 描述方法:二階微分方程
二階電路分類
零輸入回響
系統的回響除了激勵所引起外,系統內部的“初始狀態”也可以引起系統的回響。在“連續”系統下,系統的初始狀態往往由其內部的“儲能元件”所提供,例如電路中電容器可以儲藏電場能量,電感線圈可以儲存磁場能量等。這些儲能元件在開始計算時間時所存儲的能量狀態就構成了系統的初始狀態。如果系統的激勵為零,僅由初始狀態引起的回響就被稱之為該系統的“零輸入回響”。一個充好電的電容器通過電阻放電,是系統零輸入回響的一個最簡單的實例。系統的零輸入回響完全由系統本身的特性所決定,與系統的激勵無關。當系統是線性的,它的特性可以用線性微分方程表示時,零輸入回響的形式是若干個指數函式之和。指數函式的個數等於微分方程的階數,也就是系統內部所含“獨立”儲能元件的個數。假定系統的內部不含有電源,那么這種系統就被稱為“無源系統”。實際存在的無源系統的零輸入回響隨著時間的推移而逐漸地衰減為零。
定義
定義
換路後,電路中無獨立的激勵電源,僅由儲能元件的初始儲能維持的回響.
也可以表述為,由儲能元件的初始儲能的作用在電路中產生的回響稱為零輸入回響(Zero-input response).
零輸入回響是系統微分方程齊次解的一部分。
零狀態回響
如果系統的初始狀態為零,僅由激勵源引起的回響就被稱之為該系統的“零狀態回響”。一個原來沒有充過電的電容器通過電阻與電源接通,構成充電迴路,那么電容器兩端的電壓或迴路中的電流就是系統零狀態回響的一個最簡單的實例。系統的零狀態回響一般分為兩部分,它的變化形式分別由系統本身的特性和激勵源所決定。當系統是線性的,它的特性可以用線性微分方程表示時,零狀態回響的形式是若干個指數函式之和再加上與激勵源形式相同的項。前者是對應的齊次微分方程的解,其中指數函式的個數等於微分方程的階數,也就是系統內部所含“獨立”儲能元件的個數。後者是非齊次方程的特解。對於實際存在的無源系統而言,零狀態回響中的第一部分將隨著時間的推移而逐漸地衰減為零,因此往往又把這一部分稱之為回響的“暫態分量”或“自由分量”;後者與激勵源形式相同的部分則被稱之為“穩態分量”或“強制分量”。
電路的儲能元器件(電容、電感類元件)無初始儲能,僅由外部激勵作用而產生的回響。
全回響
在一些有初始儲能的電路中,為求解方便,也可以假設電路無初始儲能,求出其零狀態回響,再和電路的零輸入回響相加既得電路的全回響。
在求零狀態回響時,一般可以先根據電路的元器件特性(電容電壓、電感電流等),利用基爾霍夫定律列出電路的關係式,然後轉換出電路的微分方程;利用微分方程寫出系統的特徵方程,利用其特徵根從而可以求解出系統的自由回響方程的形式;零狀態回響由部分自由回響和強迫回響組成,其自由回響部分與所求得的方程具有相同的形式,再加上所求的特解便得系統的零狀態回響形式。可以使用衝激函式係數匹配法求解。