中國量子雷達系統經14所研製成功,達到國際先進水平。該量子雷達系統由中國電科14所智慧型感知技術重點實驗室研製,在中國科學技術大學、中國電科27所以及南京大學等協作單位的共同努力下,經過不懈的努力,完成了量子探測機理、目標散射特性研究以及量子探測原理的實驗驗證,並且在外場完成真實大氣環境下目標探測試驗,獲得百公里級探測威力,探測靈敏度極大提高,指標均達到預期效果,取得階段性重大研究進展與成果。
量子雷達分類,技術優勢,先進水平,
量子雷達分類
根據利用量子現象和光子發射機制的不同,量子雷達主要可以分為以下3個類別:
一是量子雷達發射非糾纏的量子態電磁波。其探測過程為利用泵浦光子穿過(BBO)晶體,通過參量下轉換產生大量糾纏光子對,各糾纏光子對之間的偏振態彼此正交,將糾纏的光子對分為探測光子和成像光子,成像光子保留在量子存儲器中,探測光子由發射機發射經目標反射後,被量子雷達接收,根據探測光子和成像光子的糾纏關聯可提高雷達的探測性能。與不採用糾纏的量子雷達相比,採用糾纏的量子雷達解析度以二次方速率提高。
二是量子雷達發射糾纏的量子態電磁波。發射機將糾纏光子對中的信號光子發射出去,“備份”光子保留在接收機中,如果目標將信號光子反射回來,那么通過對信號光子和“備份”光子的糾纏測量可以實現對目標的檢測。
三是雷達發射經典態的電磁波。在接收機處使用量子增強檢測技術以提升雷達系統的性能,目前,該技術在雷射雷達技術中有著廣泛的套用。中電14所實際上套用的是上述三種模式中的一種。
技術優勢
目前,經典雷達存在一些缺點,一是發射功率大(幾十千瓦),電磁泄漏大;二是反隱身能力相對較差;三是成像能力相對較弱;四是信號處理複雜,實時性弱。針對經典雷達存在的技術難點,量子信息技術均存在一定的技術優勢,可以通過與經典雷達相結合,提升雷達的探測性能。
首先,量子信息技術中的信息載體為單個量子,信號的產生、調製和接收、檢測的對象均為單個量子,因此整個接收系統具有極高的靈敏度,即量子接收系統的噪聲基底極低,相比經典雷達的接收機,噪聲基底能夠降低若干個數量級。再忽略工作頻段、雜波和動態範圍等實現因素,則雷達作用距離可以大幅提升數倍甚至數十倍。從而大大提升雷達對於微弱目標,甚至隱身目標的探測能力。
其次,量子信息技術中的調製對象為量子態,相比較經典雷達的信息調製對象,量子態可以表征量子“漲落變化”等微觀信息,具有比經典時、頻、極化等更加高階的信息,即調製信息維度更高。從資訊理論角度出發,通過對高維信息的操作,可以獲取更多的性能。對於目標探測而言,通過高階信息調製,可以在不影響積累得益的前提下,進一步壓低噪聲基底,從而提升噪聲中微弱目標檢測的能力;從信號分析角度出發,通過對信號進行量子高階微觀調製,使得傳統信號分析方法難以準確提取徵收信號中調製的信息,從而提升在電子對抗環境下的抗偵聽能力。綜合而言,通過量子信息技術的引入,通過量子化接收,原理上可以有效降低接收信號中的噪聲基底功率;通過量子態調製,原理上可以增加信息處理的維度,一方面可以提升信噪比得益,另一方面可以降低發射信號被準確分析和複製的可能性,從而在目標探測和電子對抗領域具有廣闊的套用潛力。
先進水平
據專家披露,其實相關研究已經做了很多年,之前做的量子成像方面的工作,並沒有在單光子水平上,而是用光的高階關聯特性實現的成像,確實有突破雲霧等的特點,但成像過程還是比較複雜的,流程也較漫長,實用性還有待發展,而且很難說叫量子成像。可以說,本次實現的技術突破是多年技術積累的結果,並非為了追趕近期“墨子”號掀起的量子熱。
本次技術突破屬於量子探測領域,特點就是突破現在測量方法的經典極限(例如光的衍射極限等),是業界比較看好的技術(誠然,也有學者對此有異議)。世界各國對此也都有研究,而且技術發展較快——2008年美國麻省理工學院的Lloyd教授首次提出了量子遠程探測系統模型—量子照射雷達,從理論上證明了量子力學可以套用於遠程目標探測。2012年,東京大學的Nakamura和Yamamoto採用超導迴路,取得了微波頻段單光子態和壓縮態產生與接收技術的新突破。2013年,義大利的Lopaeva等首次用實驗方法實現了量子照射雷達,該實驗基於光子數關聯,驗證了Lloyd提出的量子照射雷達模型探測在高噪聲及高損耗時依然有目標探測能力;2015年,德國亞琛工業大學的Shabir Barzanjeh等對微波量子照明探測進行了深入研究。