中國能源報告2018

中國能源報告2018

《中國能源報告2018》是2018年11月01日科學出版社出版的圖書,作者是魏一鳴等。

基本介紹

  • 書名:中國能源報告2018
  • 作者:魏一鳴等
  • ISBN:9787030592569
  • 頁數:409
  • 定價:228.00元
  • 出版社:科學出版社
  • 出版時間:2018年11月01日
  • 裝幀:平脊精裝
  • 開本:16
內容簡介,圖書目錄,

內容簡介

能源密集型部門綠色轉型受到國際社會和學術界的廣泛關注。鋼鐵、有色店凳射整、建材、化工、電力、交通、建築等能源密集型部門的綠色轉型既是當前打好污染防治攻堅戰的關鍵,也是長遠建設生態文明的重中之重。本書是《中國能源報告》系列研究報告的第七卷。在新的時代背景下,本報告總結並提煉了世界和中國能源市場的發展態勢及出現的新特徵,系統分析了“綠色發展”對艱刪充能源密集型部門的長遠影響。在綜合評估能源密集型產品和服務需求的基礎上,本書對電力、鋼鐵、水泥、化工、交通、建築等部門的綠色轉型開展研究,並探討了有關的能源技術、能源政策等問題。 組拳協乃《中國能源報告》是系列研究報告,自2006年以來,每兩年出版一卷。根據國際和國內能源發展形勢的變化,每卷選擇不同主題,開展有針對性的研究。突出研究的實證性和政策性,為國家相關決策部門提供參考和信息支撐。

圖書目錄

前言
縮寫和縮略語
第1章 世界與中國能源發展概況 1
1.1 世界能源發展態勢 2
1.1.1 能源消費增速總體放緩,增量主要來自新興經濟體 2
1.1.2 化石能源儲采比未見明顯下降,價格未現長期上漲趨勢 3
 頁刪愉 1.1.3 化石能源主導地位不變,可再生能源發展迅速 5
1.1.4 世界油氣消費東移,亞太成貿易活躍區 7
1.1.5 能源強度呈下降趨勢,各國降幅差異顯著 8
1.1.6 碳排放量持續攀升,但碳強度呈下降趨勢 10
1.2 世界用能部門發展現狀 10
1.2.1 工業用能快速增長,鋼鐵成工業部門最大能耗行業 10
1.2.2 交通用能占比約30%,公路交通占交通能耗比例最大 11
1.2.3 建築用能已超工業和交通,居民建築占建築能耗的70% 12
1.2.4 發電結構以燃煤為主,電力是最大碳排放部門 12
1.3 世界能源新變化和新特點 14
1.3.1 原油市場基本面得到改善,市場呈復甦態勢 14
1.3.2 全球能源併購復甦,各地區呈差異化發展 15
1.3.3 可再生髮電成本顯著下降,投資前景廣闊 16
1.3.4 燃油車開始受到挑戰,新能源汽車加快交通能源轉型 18
1.3.5 《巴黎協定》不確定性增大,應對氣候變化任重道遠 19
1.4 中國能源發展概況 19
1.4.1 經濟與能源消費增速放緩,煤炭消費比重下降 19
1.4.2 清潔能源發電比重增加,可再生能源裝機份額提升 21
1.4.3 碳排放總量大,製造業排放占比過半 22
1.4.4 能源進口量持續增長,全球貿易份額比重下照她閥降 23
1.4.5 能源流向結構與已開發國家顯著不同,工業用能占比高 25
1.5 中國能源發展新變化與新格局 26
1.5.1 “4045”碳強度目標提前實現,主動減排格局形成 26
1.5.2 北方地區大力推進清潔取暖行動 27
1.5.3 促進鄉村振興戰略與低碳發展戰略高度融合迫在眉睫 28
1.5.4 全國碳排放交易體系正式啟動 29
1.5.5 原油期貨交易助推人民幣國際化和對外開放 31
1.5.6 新能源鍵妹戲汽車發展迅猛 31
第2章 中國能源密集型部門綠色轉型的機遇和挑戰 33
2.1 能源密集型部門綠色轉型的迫切需要 34
2.1.1 綠色發展要求促進“綠色經濟”轉型 34
2.1.2 技術進步促使節能減排穩步推進 36
2.1.3 我國能源密集型部門能效不及國際水平 39
2.2 國內能源消費與行業產值預測 43
2.2.1 全國GDP總量將采檔穩步增長,2035年前增長勢頭良好 43
2.2.2 能源消費總量預計滿足“十三五”規劃,未超50億噸標準煤 44
2.2.3 能源密集型部門增加值上升,2030年行業增加值將近25萬億 44
2.3 能源密集型部門綠色轉型的機遇 45
2.3.1 全球經濟帶動行業變革,“一帶一路”帶來新契機 45
2.3.2 供給側改革帶來變革機遇,“中國製造2025”推動產業結構轉型 46
2.3.3 技術進步推動行業高能效化,智慧型化趨勢已在製造業凸顯 46
2.3.4 綠色發展理念推動低碳轉型,智慧建築成為建築業新趨勢 47
2.3.5 新興能源密集型部門逐漸產生,資訊時代誕生能源密集型新產業 47
2.4 能源密集型部門綠色轉型的挑戰 48
2.4.1 生態文明建設提出新要求,替代產業規模化發展需未雨綢繆 48
2.4.2 消費結構升級拉動製造業需求,終端電力消費量將顯著增加 48
2.4.3 貿易保護主義抬頭,能源密集型部門發展受限 49
2.4.4 歐洲地緣政治影響出口,新興經濟體競爭帶來新挑戰 49
2.4.5 人工智慧發展影響能源密集型部門,電力行業需加速智慧型化發展 50
2.5 本章小結 50
第3章 能源密集型部門綠色發展水平評估 52
3.1 能源密集型部門綠色發展現狀 53
3.1.1 能源密集型部門綠色發展與可持續發展 53
3.1.2 能源密集型部門綠色發展符合國家政策需求 53
3.2 中國能源密集型部門綠色發展評估 54
3.2.1 能源密集型部門綠色發展評估概述 54
3.2.2 能源密集型部門綠色發展評估指標 55
3.2.3 能源密集型部門綠色發展評估方法 57
3.3 中國能源密集型部門綠色發展水平與定位 59
3.3.1 綠色發展靜態水平相對較好,但與世界最先進水平仍有差距 60
3.3.2 綠色發展動態進步情況不容樂觀,環境狀況亟待改善 61
3.4 中國代表性能源密集型部門綠色發展評價 64
3.4.1 電力行業綠色轉型迅速,存在進一步的改進空間 64
3.4.2 鋼鐵行業綠色轉型快速,仍有一定的發展空間 66
3.4.3 水泥行業綠色轉型平穩,轉型速度比較緩慢 68
3.4.4 化工行業綠色轉型較快,與國際先進水平差距明顯 69
3.4.5 交通部門綠色轉型艱難,轉型過程易出現停滯甚至反彈 71
3.5 本章小結 72
第4章 社會經濟綠色轉型對能源密集型產品和服務的需求 75
4.1 中國社會經濟發展圖景 76
4.1.1 人口總量及年齡結構 76
4.1.2 城鎮化水平 78
4.1.3 經濟總量、產業結構及經濟發展驅動因素 80
4.1.4 建築規模 83
4.1.5 交通基礎設施規模 84
4.2 社會經濟綠色轉型驅動中國電力需求增速放緩 85
4.2.1 電力需求目前處於快速上漲階段 85
4.2.2 多重因素影響未來電力需求變動趨勢 86
4.2.3 未來電力需求將持續增加並在2040年飽和 90
4.3 社會經濟綠色轉型對鋼鐵需求的變化影響顯著 93
4.3.1 社會經濟模式影響鋼鐵存量 93
4.3.2 鋼鐵需求有望於2020年前達到峰值 94
4.3.3 未來十年內鋼鐵需求將持續下降 100
4.4 社會經濟綠色轉型推動水泥產量下降 102
4.4.1 人均水泥產量長期居高 102
4.4.2 住房規模及公路建設影響水泥產量 103
4.4.3 水泥產量已達峰 106
4.5 社會經濟綠色轉型將推動化工產品產量和結構變化 108
4.5.1 化工產品產量與經濟成長強相關 108
4.5.2 高端化工產品需求增速將超傳統產品 110
4.6 社會經濟綠色轉型影響客運交通需求 111
4.6.1 城市客運交通出行需求持續增長 111
4.6.2 城際客運保持穩步增長態勢 115
4.6.3 民航客運增長勢頭強勁 117
4.6.4 低碳城市交通迎來新機遇 120
4.7 本章小結 121
第5章 中國電力行業綠色轉型的路徑選擇和潛力評估 127
5.1 電力行業綠色發展現狀 128
5.1.1 裝機容量穩步增長,電源結構有待最佳化 128
5.1.2 供電煤耗持續下降,排放強度仍然較高 130
5.1.3 發電技術不斷提升,清潔低碳成為發展核心 134
5.2 推廣先進技術提高發電效率 136
5.2.1 加速淘汰落後技術,提高新建機組準入門檻 137
5.2.2 加強技術革新,提升電力行業減排潛力 138
5.2.3 提升效率助力綠色發展,華北地區減排顯著 139
5.3 實施能源替代最佳化發電結構 141
5.3.1 加快降低可再生能源發電成本,持續最佳化區域資源配置 141
5.3.2 大幅推廣可再生能源發電,降低燃煤發電占比 143
5.3.3 提高可再生能源利用效率,加大區域減排貢獻 145
5.3.4 協調推進各區域節能降耗工作,重點改善電源結構 145
5.4 市場化改革助力電力系統綠色轉型 147
5.4.1 電力系統複雜特殊,綠色轉型需要完善市場機制 147
5.4.2 新電改拉開序幕,凸顯綠色電力技術價值 148
5.4.3 創新電力行業運營模式,提高電力系統效率 150
5.4.4 最佳化電改試點,加速綠色轉型 152
5.5 中國電力行業綠色轉型潛力評估 152
5.5.1 電力行業碳排放有望於2023年達峰 153
5.5.2 生產端和消費端共促能源消費大幅降低 156
5.5.3 非化石能源發電量占比將於2029年過半 158
5.5.4 擴大清潔電力跨區域傳輸規模有助於綠色轉型 161
5.5.5 太陽能技術或成發展重點 162
5.6 本章小結 165
第6章 中國鋼鐵行業綠色轉型:發展節能技術是關鍵 167
6.1 鋼鐵行業綠色發展現狀 168
6.1.1 供求市場趨於緩和,產能利用率小幅回升 168
6.1.2 電爐鋼占比較低,鋼鐵綠色轉型技術依賴性強 169
6.1.3 鋼鐵行業減排政策力度加大,化解過剩產能是首要任務 172
6.2 淘汰落後產能政策可大幅提高行業能效 173
6.2.1 設備大型化是鋼鐵節能的主要方式 174
6.2.2 加速淘汰落後產能減排效果顯著 175
6.3 發展短流程煉鋼將最佳化鋼鐵生產結構 176
6.3.1 電弧爐發展或成趨勢 176
6.3.2 重視短流程過程中重金屬排放 176
6.4 節能技術改造可實現能源回收利用 178
6.4.1 降低燒結機漏風率並推廣高爐噴煤技術 178
6.4.2 研發污染物的脫除技術促進污染物協同治理 180
6.5 鋼鐵行業綜合綠色政策發展潛力和效果分析 180
6.5.1 利用技術創新促使鋼鐵行業排放儘快達峰 180
6.5.2 重點防治有毒重金屬 182
6.5.3 綜合策略促進減排成本下降 187
6.5.4 降低成本是推廣節能技術關鍵 188
6.6 本章小結 189
第7章 中國水泥行業綠色轉型:推進現有技術節能改造是重點 191
7.1 水泥行業綠色發展現狀 192
7.1.1 綜合能耗不斷下降 192
7.1.2 碳排放量位居工業部門首位 193
7.1.3 煙粉塵是最典型的污染物 195
7.1.4 發展燃料及原料替代是新途徑 197
7.2 推廣先進技術可有效實現節能減排 199
7.2.1 引入先進技術實現國家規劃目標 200
7.2.2 改進技術和智慧型技術是發展重點 202
7.2.3 利用技術變革推動生產清潔化 205
7.3 使用替代燃料可促進節能減排與危廢處理協同發展 207
7.3.1 協同處置生活垃圾提高單位熟料節能量 208
7.3.2 改變燃料結構提高節能比例 210
7.3.3 提升替代燃料率降低碳排放量 211
7.4 發展原料替代降低水泥最高過程排放量 212
7.4.1 發展電石制水泥降低能耗和排放 212
7.4.2 新型低碳水泥直接減少過程排放量 215
7.5 水泥行業綠色轉型潛力及綜合效果分析 217
7.5.1 多種策略降低能源消耗及排放 217
7.5.2 低需求路徑下的累計污染物減排最大 219
7.5.3 高需求路徑實現單位減排成本最優 220
7.5.4 短期推廣節能改進技術為主,長期發展替代燃料與原料 221
7.6 本章小結 224
第8章 中國化工行業綠色轉型:轉變生產方式是核心 226
8.1 化工行業綠色發展現狀 227
8.1.1 化工行業產品繁多且體量巨大 227
8.1.2 化工行業總體能源消費持續增加且單產能耗落後國際先進水平 229
8.1.3 二氧化碳及污染物排放位居中國工業前列 231
8.1.4 “大而不強”迫使化工行業推進綠色轉型 232
8.2 調整生產方式對綠色轉型影響尤其顯著 236
8.2.1 構建乙烯生產的三級能源技術選擇框架 237
8.2.2 生產方式清潔化發展可有效促進節能減排 238
8.2.3 煤制烯烴將對能耗和碳排放總量貢獻過半 239
8.2.4 促進蒸汽裂解套用並適量發展外購甲醇制烯烴 241
8.3 最佳化生產工藝促進節能減排 242
8.3.1 推進先進技術可降低單位能耗與排放,甲醇制烯烴方式降幅最大 243
8.3.2 能耗與排放總量有望達峰,但節能減排潛力有限 244
8.4 乙烯工業綠色轉型的減排潛力及綜合效果 246
8.4.1 需求與生產方式調整促進乙烯工業實現綠色發展 247
8.4.2 裂解原料結構與煤氣化方式需調整 251
8.4.3 碳減排隨乙烯生產成本上升而有望實現收益 252
8.4.4 長期能耗排放達峰取決於關鍵技術的突破 254
8.5 本章小結 255
第9章 中國客運交通部門綠色轉型:最佳化運輸結構先行 256
9.1 交通客運部門綠色發展現狀 257
9.1.1 我國交通部門能耗增長迅速 257
9.1.2 綠色交通清潔能源使用大勢所趨 262
9.2 運輸燃料技術升級是推進單位能耗和排放下降的主要手段 267
9.2.1 提高機動車燃料效率促進城市客運交通能耗與排放達峰 268
9.2.2 加速淘汰技術落後運輸裝備 271
9.3 引導低碳出行是調整交通客運結構重要途徑 273
9.3.1 調高公共運輸分擔率促進節能減排 273
9.3.2 發揮鐵路旅客運輸優勢最佳化交通運輸結構 275
9.3.3 引導低耗能出行促進城際交通節能減排 277
9.4 加快新能源在交通部門的套用 278
9.4.1 多措並舉促進新能源汽車推廣套用 278
9.4.2 降低電池成本提高新能源汽車市場占有率 279
9.4.3 發展清潔燃料減排效果有限 280
9.4.4 加速城際交通新能源商業化套用 282
9.4.5 突破航空生物燃料瓶頸 283
9.5 多措施聯動實現中國客運交通綠色轉型 285
9.5.1 城市客運需求發展與能耗和排放脫鉤 285
9.5.2 推廣清潔能源實現城市客運交通燃料結構電氣化 286
9.5.3 最佳化城市客運交通出行模式提高綜合運輸效率 287
9.5.4 控制機動車污染物排放有效提高環境效益 289
9.5.5 城際客運交通有望在2035~2045年達峰 290
9.5.6 航空與公路運輸仍是排放的重點行業 293
9.6 本章小結 295
第10章 建築部門綠色轉型:構建建築節能技術體系 298
10.1 建築部門綠色發展現狀 299
10.1.1 建築能耗總量世界第一且仍具有較大的增長空間 299
10.1.2 居民用能設備持續增長 300
10.1.3 城鎮化和經濟轉型將導致建築能耗進一步增長 301
10.1.4 公共建築節能效果顯著 302
10.1.5 農村建築節能問題不容忽視 303
10.1.6 建築用能結構向清潔化方向發展 304
10.1.7 提升建築能效成為關鍵 305
10.2 中國建築能耗影響因素分析 305
10.2.1 人均建築面積是驅動建築能耗增長的關鍵因素 306
10.2.2 經濟發展水平直接影響建築能耗 307
10.2.3 建築能效提升是降低建築能耗之本 307
10.2.4 重點關注城鄉結構變化對建築能耗影響 308
10.2.5 產業結構對未來建築能耗的影響不容忽視 309
10.3 城鄉居民節能行為與建築部門綠色轉型 309
10.3.1 居民能源消費行為受時空及設備影響大 310
10.3.2 居民能源消費行為受性別影響最為顯著 313
10.3.3 節能設備的使用可顯著降低能耗 316
10.3.4 固體燃料在農村使用普遍,推動居民燃料選擇清潔化具有重要意義 318
10.4 中國建築部門綠色轉型潛力分析 325
10.4.1 建築能耗有望在約2040年達峰 325
10.4.2 能耗強度下降節能潛力大 326
10.5 本章小結 327
第11章 中國能源密集型部門綠色技術預見 329
11.1 能源供應技術前瞻 331
11.1.1 非常規天然氣:創新水平井多段壓裂技術,提升儲層模擬監測技術 331
11.1.2 核能發電:聚焦第四代核電技術,探索可控核聚變技術 333
11.1.3 分散式發電:短期發展分散式光伏發電,強化協同調度能力 336
11.1.4 交通生物燃料:主要發展生物乙醇技術,持續探索生物甲烷技術 339
11.2 能源加工轉換及儲運技術前瞻 342
11.2.1 儲能技術:研發先進儲能電池技術,攻關關鍵儲能元件 342
11.2.2 全球能源網際網路:發展智慧型電網技術,突破長距離電力傳輸技術 345
11.3 能源使用技術前瞻 347
11.3.1 工業部門:突破綠色工藝過程技術,發展資源回收利用技術 347
11.3.2 電動汽車:推廣智慧型車聯網技術,研發燃氣輪機增程技術 348
11.3.3 綠色建築:推廣可再生能源建築技術,健全建築數據服務體系 350
11.4 能源末端治理技術前瞻 352
11.4.1 CCUS:大力示範燃燒後捕集技術,發展強化驅油和鹹水層封存技術 352
11.4.2 多污染物協同治理技術:推進多污染物協同治理,積極發展資源化利用技術 355
11.5 中國能源密集型部門綠色技術的發展重點 357
11.5.1 工業部門發展應重點提升能效,促進循環利用 357
11.5.2 交通部門應注重最佳化市場環境,提供政策激勵 357
11.5.3 建築部門需制定嚴格能效標準,推廣全生命周期綠色化 357
11.5.4 電力部門應加強多能互補,實現高效、靈活、安全的供應 358
第12章 中國能源密集型部門綠色轉型政策的政策模擬 359
12.1 引言 360
12.2 電力市場改革背景下實施碳定價政策的經濟影響模擬 361
12.2.1 電力價格管制可以保護經濟但明顯降低碳定價政策的效率 362
12.2.2 僅針對電力部門的碳定價政策不足以實現全國減排目標 366
12.2.3 碳定價政策逐步從電力部門推廣至全國將加大經濟影響,但會降低邊際減排成本 367
12.2.4 優先在非重點用電部門進行電價機制改革 369
12.3 私人交通推廣電動汽車的社會經濟影響模擬 372
12.3.1 退坡補貼電動汽車增長緩慢,占比遠低於規劃目標 372
12.3.2 提高接受程度協補貼加速市場滲透,提高電力清潔度收效甚微 373
12.3.3 提高接受程度協補貼可有效促進CO2減排,提高電力清潔度效果最佳 377
12.3.4 保持補貼巨觀經濟、居民福利負面衝擊最小,燃油汽車製造業收益均明顯受損、轉型勢在必行 377
12.4 CCS大規模套用的社會經濟效應模擬 379
12.4.1 徵收碳稅補貼CCS技術對巨觀經濟的負面影響最小 379
12.4.2 CCS的大規模套用會對非金屬業利潤衝擊最大 382
12.4.3 不同CCS補貼政策的累計減排效果差距較小 383
12.5 進出口貿易政策對化工行業的社會經濟影響 384
12.5.1 降低進口關稅對經濟影響最大,取消出口退稅影響最小 385
12.5.2 提高出口關稅的部門衝擊最大,各調整方案下均應重點關注石油化工 385
12.5.3 現行進出口調整規劃均可降低排放量,但無法實現化工行業碳強度目標 388
12.6 碳稅對能源密集型部門的社會經濟影響評估 388
12.6.1 GDP損失在低碳稅稅率下隨年份先升後降,而在高碳稅稅率下隨年份增大 388
12.6.2 電力部門市場競爭力受碳稅負面衝擊最大,而交通部門受衝擊最小 389
12.6.3 建築部門利潤損失明顯,而其他能源密集部門利潤增加 390
12.6.4 建築部門就業損失最為嚴重,而化工和鋼鐵部門就業率增加 391
12.7 本章小結 392
第13章 政策建議 394
參考文獻 398
後記 408
Contents
Preface
Abbreviations
Chapter 1 Energy development in world and China 1
1.1 Trend of world energy development 2
1.1.1 The growth rate of energy consumption slows down, and the increased energy consumption comes from emerging economies 2
1.1.2 Fossil energy reserve to production ratio is stable, and the prices are not continuously growing 3
1.1.3 Fossil energy dominates the world’s energy consumption, but the renewable energy develops quickly 5
1.1.4 World oil and gas consumption moves eastward, and Asia-Pacific region becomes an active trade zone 7
1.1.5 Energy intensity experiences a declining trend and varies among countries 8
1.1.6 Carbon emissions increase continuously, but the carbon intensity declines 10
1.2 Status quo of world energy use by sector 10
1.2.1 Industrial energy consumption increases rapidly, among which iron and steel industry is the largest energy consumer 10
1.2.2 Energy use for transport sector accounts for 30%, and road transport energy use takes the largest proportion 11
1.2.3 Building energy use surpasses the industrial and transport energy use, and the residential building energy use accounts for 70% 12
1.2.4 The power generation is dominated by coal, and power sector becomes the largest carbon emitter 12
1.3 The new changes and new characteristics in the world energy 14
1.3.1 The fundamentals of crude oil market have improved, and the market is recovering 14
1.3.2 Global energy mergers and acquisitions are recovering, but with different regional perfor-mances 15
1.3.3 The costs of renewable power generation decrease dramatically, and investment prospects are broad 16
1.3.4 Fossil fuel vehicles are facing a big challenge, while new energy vehicles boost energy transi-tion in the transport sector 18
1.3.5 The uncertainty of the Paris Agreement is increasing, and coping with climate change is still a long way off 19
1.4 Overview of Energy Development in China 19
1.4.1 Economic and energy consumption growth slows down, and proportion of coal consumption declines 19
1.4.2 The proportion of clean energy power generation and the share of renewable energy installed capacity increase 21
1.4.3 Carbon dioxide emissions are growing faster and that from manufacturing account for more than half of the total 22
1.4.4 Energy imports grow but its share in global trade declines 23
1.4.5 Energy flow differs from developed countries and the proportion of industrial energy consumption is very high 25
1.5 New Changes and New Patterns of Energy Development in China 26
1.5.1 The “4045” carbon intensity target is realized ahead of schedule, active emission reduction pattern has been formed 26
1.5.2 Clean heating operations were promoted vigorously in northern China 27
1.5.3 Promoting a high degree of integration between rural revitalization strategies and low-carbon development is imminent 28
1.5.4 The national carbon emissions trading system officially launched 29
1.5.5 Crude oil futures trading boosts RMB internationalization and opening up 31
1.5.6 The rapid development of new energy automotive industry 31
Chapter 2 The opportunities and challenges of green transition in China’s energy intensive sectors 33
2.1 The urgent need for green transition in energy intensive sectors 34
2.1.1 Green development accelerates green economy transformation 34
2.1.2 Technological progress promotes energy saving and emission reduction steadily 36
2.1.3 Energy efficiency is inferior of China's energy intensive sectors is inferior to international level 39
2.2 Forecast of domestic energy consumption and industry output 43
2.2.1 The national GDP will increase steadily and the trend will remain positive by 2035 43
2.2.2 The total energy consumption is expected to meet the goal of the “13th Five-Year Plan” and not exceed 5 billion tce 44
2.2.3 The value-added in energy intensive sectors will raise, and reach nearly 25 trillion in 2030 44
2.3 Opportunities of green transition in energy intensive sectors 45
2.3.1 Global economy leads to industrial transition, “One Belt One Road” initiative brings new chance 45
2.3.2 Supply-side reform brings reform opportunities, China 2025 promotes industrial structure transition 46
2.3.3 Technology progress promotes high-efficient industry, and the usage of artificial intelligence has become a global trend in manufacturing 46
2.3.4 Green development promotes low-carbon transition, and smart building has become a new trend of construction industry 47
2.3.5 New energy intensive sectors are emerging, and the information age has triggered new energy intensive industries 47
2.4 Challenges of green transition in energy intensive sectors 48
2.4.1 New requirements are put forward for ecological civilization, and the large-scale development of alternative industries needs to be prepared in advance 48
2.4.2 The upgrading of consumption structure will drive the demand of manufacturing, and the end-use electricity consumption will increase significantly 48
2.4.3 Trade protectionism is on the rise, which poses restriction on the development of energy intensive sectors 49
2.4.4 Politics in Europe affects exports, and competition in emerging economies brings new challenges 49
2.4.5 The development of artificial intelligence influences energy intensive sectors, and more intelligent progress should be included into the power industry 50
2.5 Summary 50
Chapter 3 Green development assessment for energy intensive sector 52
3.1 Green development status quo of energy intensive sector 53
3.1.1 Green development and sustainable development of energy intensive sector 53
3.1.2 Green development policies of energy intensive sector 53
3.2 Green development indicators and assessment methods for energy intensive sector 54
3.2.1 Overview 54
3.2.2 Green development indicators of energy intensive sector 55
3.2.3 Green development assessment methods for energy intensive sector 57
3.3 Green development level and global position of China’s energy intensive sector 59
3.3.1 China’s static green development level is above average, but far from the global advanced level 60
3.3.2 China’s green development progress is not optimistic, and the environmental condition is urgent to be improved 61
3.4 Green development assessment for China’s representative energy intensive industries 64
3.4.1 Green development of the power industry is rapid, but still has potential for further improvement 64
3.4.2 Green development of the steel industry is fast, but still need improvement 66
3.4.3 Green development of the cement industry is stable, but the development speed is slow 68
3.4.4 Green development of the chemical industry is relatively fast, but with big gap compared with international advanced level is obvious 69
3.4.5 Green development of the transportation sector is hard, and it is prone to stagnate and even retrogress 71
3.5 Summary 72
Chapter 4 Demand for energy-intensive products and services along with social and economic transformation 75
4.1 Prospect of social and economic development in China 76
4.1.1 Total population and its structure 76
4.1.2 The level of urbanization 78
4.1.3 Economy, industrial structure and economic development drivers 80
4.1.4 Building scale 83
4.1.5 Transportation infrastructure scale 84
4.2 Transition towards a green socio-economy will slow the growth of China’s electricity demand 85
4.2.1 Electricity demand is currently in a fast-growing phase 85
4.2.2 Multiple factors affect the trend of electricity demand 86
4.2.3 Electricity demand will continue to increase until 2040 90
4.3 Transition towards a green socio-economy will have a significant impact on the steel demand 93
4.3.1 Socio-economic pattens affect steel stock 93
4.3.2 Steel demand is likely to peak at 2020 94
4.3.3 Steel demand will continue to decline in the next decade 100
4.4 Transition towards a green socio-economy will promote the decline of cement production 102
4.4.1 Per capita cement production is at a large value for a long time 102
4.4.2 Housing scale and road construction affect cement production 103
4.4.3 Cement production has reached the peak 106
4.5 Transition towards a green socio-economy will trigger the production and structural changes of chemical products 108
4.5.1 Production of Chemical products are strongly correlated with economic growth 108
4.5.2 Demand for premium chemical products will grow faster than traditional products 110
4.6 Transition towards a green socio-economy will affect passenger travel demand 111
4.6.1 Urban passenger travel demand continues to grow 111
4.6.2 Intercity passenger transport will increase steadily in the long term 115
4.6.3 Air passenger transport is projected to expand dramatically 117
4.6.4 Low-carbon urban transportation is embracing new opportunities in the era of Internet 120
4.7 Summary 121
Chapter 5 Transition pathways to a green power industry in China 127
5.1 Status quo of green development in the power sector 128
5.1.1 Installed capacity will be steadily increasing while power mix needs to be optimized 128
5.1.2 Coal consumption per kWh continuously declines while emission intensity is still at a high level 130
5.1.3 Power generation technologies continues to upgrade and low-carbon technologies are the core 134
5.2 Promote advanced technologies to increase the efficiency of power generation 136
5.2.1 Accelerate the phase-out of backward technologies and increase the threshold for newly-built technologies 137
5.2.2 Strengthen technological innovation and increase the potential for emissions reduction 138
5.2.3 Increasing the energy efficiency promotes the green development with the north region contributing the most 139
5.3 Implement energy substitution to optimize the structure of power generation 141
5.3.1 Speed up the cost reduction of renewable energy and continue to optimize the regional resource allocation 141
5.3.2 Expand renewable energy generation substantially and reduce the share of coal-fired power generation 143
5.3.3 Improve the utilization efficiency of renewable energy and increase regional contributions to emissions reduction 145
5.3.4 Promote energy conservation and consumption reduction coordinately in six regions and improve the structure of power generation 145
5.4 Electricity market reform will facilitate the green transition 147
5.4.1 Market mechanism needs to be improved for the green transition considering its complexity and uniqueness 147
5.4.2 New electricity market reform enlarges the value of green technologies 148
5.4.3 Innovating the business models helps improving the efficiency of the power system 150
5.4.4 Optimizing market pilots of electricity market reform stimulates the green transition 152
5.5 Potential assessment of green transition in China’s power industry 152
5.5.1 Carbon emission of China’s power industry is expected to peak at 2023 153
5.5.2 Joint efforts from supply-side and demand-side are required for energy saving 156
5.5.3 Share of non-fossil energy power generation will be more than half by 2029 158
5.5.4 Scale of inter-regional transmission of clean power needs to be expanded 161
5.5.5 Promoting the development of solar power generation technology may become the main direction 162
5.6 Summary 165
Chapter 6 Transition towards a green iron and steel industry in China: promoting the energy-saving technologies is the key 167
6.1 Status quo of green development in the iron and steel industry 168
6.1.1 Supply and demand market tends to ease and capacity utilization efficiency slightly increases 168
6.1.2 Proportion of electric-arc furnace steelmaking is relatively low, and the green transition of iron and steel industry is highly dependent on technologies 169
6.1.3 Emission reduction policies for iron and steel industry have been strengthened, and cutting overcapacity is the priority 172
6.2 Eliminating backward production capacity can substantially improve the energy efficiency 173
6.2.1 Upgrading to large-scale equipments are the main way to save energy in the iron and steel industry 174
6.2.2 Accelerating the phase-out of backward production capacity has significant impact on emission reduction 175
6.3 Development of electric-arc furnace steelmaking helps optimize the structure of steel production 176
6.3.1 Electric-arc furnace development tends to be the mainstream 176
6.3.2 Heavy metal emissions during electric-arc furnace steelmaking needs to be controlled 176
6.4 Energy-saving technologies can realize energy recycling 178
6.4.1 Reduce sintering leakage rate and promote pulverized coal injection technology 178
6.4.2 Research and develop the pollutant removal technology to promote the coordinated abatement of pollutants 180
6.5 Potential effect of comprehensive policies on the green development in China’s iron and steel industry 180
6.5.1 Innovate the technologies to speed up the peak of emissions 180
6.5.2 Highlight the prevention and control of toxic heavy metals 182
6.5.3 Implement the comprehensive strategy to reduce the abatement costs 187
6.5.4 Reducing costs is the key to promote energy-saving technologies 188
6.6 Summary 189
Chapter 7 Transition towards a green cement industry in China: Promoting the energy-saving retrofit for existing technologies is the focus 191
7.1 Status quo of green development in the cement industry 192
7.1.1 Comprehensive energy consumption continues to decline 192
7.1.2 Carbon emissions rank top among the industrial sectors 193
7.1.3 Dust is the most typical pollutant 195
7.1.4 Development of alternative fuels and raw materials are new instruments 197
7.2 Promoting advanced technologies can effectively realize energy conservation and emissions reduction 199
7.2.1 Introducing advanced technology can achieve national planning goals 200
7.2.2 Upgrading technology and smart technology are the focus of development 202
7.2.3 Innovating technologies facilitates the cleaner production 205
7.3 Using alternative fuels can promote the coordinated development of energy and emissions reduction and hazardous waste treatment 207
7.3.1 Coordinated disposal of domestic waste can increase the energy savings of per unit of clinker 208
7.3.2 Changing the fuel structure can increase the energy saving ratio 210
7.3.3 Increasing the rate of alternative fuels can reduce the carbon emissions 211
7.4 Development of alternative raw materials helps reduce the process-related emissions 212
7.4.1 Using carbide slag to produce cement can reduce energy consumption and emissions 212
7.4.2 New types of low-carbon cement can directly reduce process-related emissions 215
7.5 Potential effect of comprehensive policies on the green development in China’s cement industry 217
7.5.1 Multiple strategies can substantially reduce energy consumption and emissions 217
7.5.2 Accumulated pollutant emissions reduction is the largest under the path of low cement demand 219
7.5.3 Optimal cost per unit emission reduction can be achieved under the path of high cement demand 220
7.5.4 Promoting energy-saving and upgrading technologies dominants in the short term and developing alternative fuels and raw materials are the trend in the long term 221
7.6 Summary 222
Chapter 8 Transition towards a green chemical industry in China: Adjusting the production ways is the core 226
8.1 Status quo of green development in the chemical industry 227
8.1.1 Chemical products are in a great variety and in huge volume 227
8.1.2 Energy consumption in chemical industry continues to increase, and efficiency for producing per ton product is lagging behind international advanced level 229
8.1.3 Emissions of CO2 and pollutants rank ahead of China's industry 231
8.1.4 Green transition is necessary because China’s chemical industry is huge but not strong 232
8.2 Adjusting the production ways is particularly important for green transition 236
8.2.1 A three-level energy technology selection framework is established for ethylene production 237
8.2.2 Shifting to clean production ways can effectively promote energy saving and emissions reduction 238
8.2.3 Coal to olefins contributes more than half of total energy and CO2 emissions 239
8.2.4 Steam cracking and methanol to olefins could be further promoted 241
8.3 Optimizing production process can promote energy saving and emissions reduction 242
8.3.1 Energy consumption and CO2 emissions for producing per ton ethylene can be reduced effectively by promoting advanced technologies especially for methanol to olefins 243
8.3.2 Energy consumption and total emissions are expected to peak, but with limited potential of energy saving and emissions reduction 244
8.4 Emission reduction potential of green transition in ethylene industry 246
8.4.1 Demand and production ways adjustment can promote the green development of ethylene industry 247
8.4.2 Structure of cracking materials and the gasification ways need to be adjusted 251
8.4.3 CO2 emission reduction is expected to gain benefit as the increase of ethylene production costs 252
8.4.4 The peak of long-term energy consumption and emissions depends on the breakthroughs of key technologies 254
8.5 Summary 255
Chapter 9 Transition towards a green passenger transport sector in China: Optim-izing transport structure is the priority 256
9.1 Development status of the passenger transport sector 257
9.1.1 Energy consumption in China's transportation sector is growing rapidly 257
9.1.2 Clean energy is the future trend of green transportation 262
9.2 Fuel technology innovation is an important measure to control energy consumption and reduce emissions 267
9.2.1 Improve the fuel efficiency of vehicles to accelerate the peak of energy consumption and emissions of urban passenger transport 268
9.2.2 Accelerate the elimination of inefficient transport technologies 271
9.3 Encouraging low-carbon travel could help optimize the structure of passenger transport 273
9.3.1 Promoting public transport will reduce the energy consumption 273
9.3.2 Railway transport will play a significant role in transport structure adjustment 275
9.3.3 Intercity passenger transport will achieve greater energy-saving and emission reduction by promoting energy efficient transport modes 275
9.4 Speed up the application of clean energy in the transport sector 278
9.4.1 Emerging new energy policies contribute to the popularization of new energy vehicles 278
9.4.2 Decreasing battery cost will increase the market share of new energy vehicles 279
9.4.3 Introducing clean fuels has limited effect on the emissions reduction in the urban passenger transport sector 280
9.4.4 Accelerate the commercial application of new energy in intercity transportation 282
9.4.5 Breaking through the bottleneck of aviation biofuel can achieve great environmental benefits 283
9.5 Multiple measures boost the green transition of China’s passenger transport 285
9.5.1 Urban passenger transport demand will decouple from energy consumption and emissions 285
9.5.2 Popularizing the clean energy facilitates the electrification of urban passenger transport 286
9.5.3 Optimizing the travel mode choice to improve the transport efficiency 287
9.5.4 Controlling the vehicle emissions to generate environmental benefits 289
9.5.5 Carbon emission of intercity passenger transport is potential to peak by 2035~2045 290
9.5.6 Air and road transport will still be the main emission sources 293
9.6 Summary 295
Chapter 10 Transition towards a green building sector in China: Establishing the energy-saving technology system 298
10.1 Development status of the building sector 299
10.1.1 China’s total building energy consumption is the highest in the world 299
10.1.2 Ownership of domestic appliances continues to grow 300
10.1.3 Urbanization and economic transformation will further increase the building energy consumption 301
10.1.4 Energy-saving potential of public buildings is remarkable 302
10.1.5 Energy conservation for rural buildings should not be neglected 303
10.1.6 Building energy source is shifting to clean energy 304
10.1.7 Improving the energy efficiency of buildings is the key 305
10.2 Driving factors for building energy consumption in China 305
10.2.1 Per capita floor area is the key factor driving the growth of building energy consumption 306
10.2.2 Economic development directly affects building energy consumption 307
10.2.3 Energy efficiency improvement is the core for reducing building energy consumption 307
10.2.4 Impacts of urban and rural structural changes on building energy consumption deserve attention 308
10.2.5 Impact of industrial structure change on future building energy consumption cannot be ignored 309
10.3 Urban and rural residents' energy-saving behavior and green transition of the building sector 309
10.3.1 Residential energy consumption behavior is greatly affected by time and spatial distribution and equipment 310
10.3.2 Gender has evident influence on residents’ energy consumption behavior 313
10.3.3 Introducing energy-saving equipment can significantly reduce energy consumption 316
10.3.4 Solid fuels are widely used in rural areas and it is of great significance to promote the clean fuel selection for rural residents 318
10.4 Potential effects of the green transition in China’s building sector 325
10.4.1 Building energy consumption is expected to peak around 2040 325
10.4.2 Decreasing the energy intensity has great potential for energy saving 326
10.5 Summary 327
Chapter 11 The Green Technology Foresight in China’s Energy Intensive Sectors 329
11.1 Frontiers of energy supply technology 331
11.1.1 Unconventional Natural Gas: Innovating Multi-interval fracturing Technique in Horizontal Well, Improving Reservoir Modeling and Monitoring Technologies 331
11.1.2 Nuclear Power: Advancing the Fourth-generation Technologies, Exploring Controllable Nuclear Fusion Technology 333
11.1.3 Distributed power generation: Developing Distributed Photovoltaic Power Generation in the Short Term, and enhancing Collaborative Dispatching Capability 336
11.1.4 Transport Biofuels: Mainly Developing Bioethanol and Bio-methane 339
11.2 Frontiers of Energy Processing, Conversion and storage technology 342
11.2.1 Energy Storage: Developing Advanced Energy Storage Battery Technology, tackling key energy storage components 342
11.2.2 Global Energy Interconnection: Developing Smart Grids, Breaking Through Long-Distance Transmission Technologies 345
11.3 Frontiers of Energy consumption technology 347
11.3.1 Industry Sector: Breaking Through the Green process technology, Developing Resource Recycling and Utilization 347
11.3.2 Electric Vehicles: Promoting Intelligent & Connected Vehicle, Developing Turbine-Recharging 348
11.3.3 Green Building: Promoting Renewable Energy Building, Improving the Construction of data Service System 350
11.4 Frontiers of Energy End-of-pipe treatment technology 352
11.4.1 Carbon Capture, Utilization and Storage: Demonstrating Post-combustion Capture, developing enhanced Oil Recovery and Saline Aquifer Storage 352
11.4.2 Multi-Pollutant Collaborative Treatment: Promoting Integrated Synergistic Control of Multi-pollutants, Actively Developing Technologies of Resource Utilization 355
11.5 Keys of Green Technology development in China’s Energy Intensive Sector 357
11.5.1 Industry sector should focus on improving energy efficiency and promoting recycling 357
11.5.2 Transport sector should pay attention to optimizing the market environment and providing policy incentives 357
11.5.3 Building sector should establish strict energy efficiency standards and promote the greening during the life cycle 357
11.5.4 Power sector should strengthen multi-energy complementarity to achieve efficient, flexible and safe supply 358
Chapter 12 Simulation of green transition policies on China’s energy intensive sectors 359
12.1 Introduction 360
12.2 Economic impact simulation of carbon pricing policy in the context of electricity market reform 361
12.2.1 Electricity prices regulation can protect the economy but significantly reduce the efficiency of carbon pricing 362
12.2.2 Carbon pricing policy limited to electricity sector is not enough to achieve national mitigation target 366
12.2.3 Gradually extending carbon pricing from electricity sector to the whole country would increase economic impact but reduce marginal abatement cost 367
12.2.4 Priority should be given to electricity price reform in non-key electricity utilization sectors 369
12.3 The socio-economic impacts of promoting new energy cars on passenger transport in China 372
12.3.1 Sales electric vehicle would increase slowly with the declining subsidies, and are far below the planning target 372
12.3.2 Increasing consumer preference and keeping subsidy will accelerate market penetration, while improving electricity cleanliness shows little effect 373
12.3.3 Increasing consumer preference and keeping subsidy could effectively promote CO2 mitigation, with improvement of electricity cleanliness performing the best 377
12.3.4 Keeping the subsidy has the least negative effect on macro economy and household welfare. and the transition of gasoline vehicle manufacturing industry is urgent 377
12.4 The socio-economic impacts of large-scale deployment of CCS 379
12.4.1 Employing carbon tax revenue to subsidize CCS has the least negative macroeconomic impact 379
12.4.2 The large-scale application of CCS has the most negative impact on the profit of nonmetal industry 382
12.4.3 There is no evident difference between the cumulative emission reduction effects of different CCS subsidy policies 383
12.5 The socio-economic impact of import and export trade policies on the chemical
industry 384
12.5.1 Reducing import tariffs has the greatest impact on the economy, while the cancellation of export tax rebates has the least impact 385
12.5.2 Increasing export tariffs has the greatest impact on the chemical industry, and petrochemicals should be paid special attention 385
12.5.3 Current import and export adjustment planning can both reduce emissions, but can not achieve the carbon intensity targets of the chemical industry 388
12.6 Socio-economic impact of carbon tax on energy intensive sectors 388
12.6.1 GDP loss rises first and then falls if the carbon tax rate is low, but increases overtime if the carbon tax rate is high 388
12.6.2 The competitiveness of power sector suffers the most negative impact from carbon tax, while the transportation sector suffers the least 389
12.6.3 The profits of building sector loss while profits of other energy intensive sectors gain 390
12.6.4 The employment losses in building sector are the most serious, while employment in the chemical and steel sectors is increasing 391
12.7 Summary 392
Chapter 13 Policy implication 394
References 398
Epilogue 408

相關詞條

熱門詞條

聯絡我們