Principles of Tribology , 2nd Edition 摩擦學原理(

Principles of Tribology , 2nd Edition 摩擦學原理(

《Principles of Tribology , 2nd Edition 摩擦學原理》是2017年清華大學出版社出版的圖書。

基本介紹

  • 中文名:Principles of Tribology , 2nd Edition 摩擦學原理(
  • 作者:溫詩鑄、黃平
  • 出版時間:2017年10月1日
  • 出版社: 清華大學出版社
  • ISBN:9787302485261
  • 定價:168 元
  • 印次:1-1
  • 印刷日期:2017.09.30
內容簡介,作者簡介,目錄,

內容簡介

本書匯集摩擦學研究的最新進展及作者和其同事從事該領域的研究成果,系統地闡述摩擦學的基本原理與套用,全面反映現代摩擦學的研究狀況和發展趨勢。全書共 21章,由潤滑理論與潤滑設計、摩擦磨損機理與控制、套用摩擦學等 3部分組成。除摩擦學傳統內容外,還論述了摩擦學與相關學科交叉而形成的研究領域。本書針對工程實際中的各種摩擦學現象,著重闡述摩擦過程中的變化規律和特徵,進而介紹基本理論、分析計算方法以及實驗測試技術,並說明它們在工程中的實際套用。本書可作為機械設計與理論專業的研究生教材以及高等院校機械工程各類專業師生的教學參考書,也可以供從事機械設計和研究的工程技術人員參考。

作者簡介

溫詩鑄 清華大學精密儀器與機械學系教授。1932年生於江西省豐城市。1955年畢業於清華大學機械製造系後留校任教,歷任機械設計教研室主任、摩擦學研究室主任、摩擦學國家重點實驗室主任。長期從事機械設計與理論專業的教學和研究,出版《摩擦學原理》(第1、2、3版)、《耐磨損設計》、《彈性流體動力潤滑》、《納米摩擦學》、《界面科學與技術》、《Principles of Tribology》等6部著作,發表學術論文500餘篇。獲國家自然科學獎二等獎、國家技術發明獎三等獎、全國優秀科技圖書獎一、二等獎以及省部級科技進步獎等共19項。1999年被選為中國科學院院士。

目錄

AbouttheAuthorsxvii
SecondEditionPrefacexix
Prefacexxi
Introductionxxiii
PartILubricationTheory1
1PropertiesofLubricants3
1.1LubricationStates3
1.2DensityofLubricant5
1.3ViscosityofLubricant7
1.3.1DynamicViscosityandKinematicViscosity7
1.3.1.1DynamicViscosity7
1.3.1.2KinematicViscosity8
1.3.2RelationshipbetweenViscosityandTemperature9
1.3.2.1Viscosity–TemperatureEquations9
1.3.2.2ASTMViscosity–TemperatureDiagram9
1.3.2.3ViscosityIndex10
1.3.3RelationshipbetweenViscosityandPressure10
1.3.3.1RelationshipsbetweenViscosity,TemperatureandPressure11
1.4Non-NewtonianBehaviors12
1.4.1Ree–EyringConstitutiveEquation12
1.4.2Visco-PlasticConstitutiveEquation13
1.4.3CircularConstitutiveEquation13
1.4.4Temperature-DependentConstitutiveEquation13
1.4.5Visco-ElasticConstitutiveEquation14
1.4.6NonlinearVisco-ElasticConstitutiveEquation14
1.4.7ASimpleVisco-ElasticConstitutiveEquation15
1.4.7.1Pseudoplasticity16
1.4.7.2Thixotropy16
1.5WettabilityofLubricants16
1.5.1WettingandContactAngle17
1.5.2SurfaceTension17
1.6MeasurementandConversionofViscosity19
1.6.1RotaryViscometer19
1.6.2Off-BodyViscometer19
1.6.3CapillaryViscometer19
References21
2BasicTheoriesofHydrodynamicLubrication22
2.1ReynoldsEquation22
2.1.1BasicAssumptions22
2.1.2DerivationoftheReynoldsEquation23
2.1.2.1ForceBalance23
2.1.2.2GeneralReynoldsEquation25
2.2HydrodynamicLubrication26
2.2.1MechanismofHydrodynamicLubrication26
2.2.2BoundaryConditionsandInitialConditionsoftheReynoldsEquation27
2.2.2.1BoundaryConditions27
2.2.2.2InitialConditions28
2.2.3CalculationofHydrodynamicLubrication28
2.2.3.1Load-CarryingCapacityW28
2.2.3.2FrictionForceF28
2.2.3.3LubricantFlowQ29
2.3ElasticContactProblems29
2.3.1LineContact29
2.3.1.1GeometryandElasticitySimulations29
2.3.1.2ContactAreaandStress30
2.3.2PointContact31
2.3.2.1GeometricRelationship31
2.3.2.2ContactAreaandStress32
2.4EntranceAnalysisofEHL34
2.4.1ElasticDeformationofLineContacts35
2.4.2ReynoldsEquationConsideringtheEffectofPressure-Viscosity35
2.4.3Discussion36
2.4.4GrubinFilmThicknessFormula37
2.5GreaseLubrication38
References40
3NumericalMethodsofLubricationCalculation41
3.1NumericalMethodsofLubrication42
3.1.1FiniteDifferenceMethod42
3.1.1.1HydrostaticLubrication44
3.1.1.2HydrodynamicLubrication44
3.1.2FiniteElementMethodandBoundaryElementMethod48
3.1.2.1FiniteElementMethod(FEM)48
3.1.2.2BoundaryElementMethod49
3.1.3NumericalTechniques51
3.1.3.1ParameterTransformation51
3.1.3.2NumericalIntegration51
3.1.3.3EmpiricalFormula53
3.1.3.4SuddenThicknessChange53
3.2NumericalSolutionoftheEnergyEquation54
3.2.1ConductionandConvectionofHeat55
3.2.1.1ConductionHeatHd55
3.2.1.2ConvectionHeatHv55
3.2.2EnergyEquation56
3.2.3NumericalSolutionofEnergyEquation59
3.3NumericalSolutionofElastohydrodynamicLubrication60
3.3.1EHLNumericalSolutionofLineContacts60
3.3.1.1BasicEquations60
3.3.1.2SolutionoftheReynoldsEquation62
3.3.1.3CalculationofElasticDeformation62
3.3.1.4Dowson–HigginsonFilmThicknessFormulaofLineContactEHL64
3.3.2EHLNumericalSolutionofPointContacts64
3.3.2.1TheReynoldsEquation65
3.3.2.2ElasticDeformationEquation66
3.3.2.3Hamrock–DowsonFilmThicknessFormulaofPointContactEHL66
3.4Multi-GridMethodforSolvingEHLProblems68
3.4.1BasicPrinciplesofMulti-GridMethod68
3.4.1.1GridStructure68
3.4.1.2DiscreteEquation68
3.4.1.3Transformation69
3.4.2NonlinearFullApproximationSchemefortheMulti-GridMethod69
3.4.3VandWIterations71
3.4.4Multi-GridSolutionofEHLProblems71
3.4.4.1IterationMethods71
3.4.4.2IterativeDivision72
3.4.4.3RelaxationFactors73
3.4.4.4NumbersofIterationTimes73
3.4.5Multi-GridIntegrationMethod73
3.4.5.1TransferPressureDownwards74
3.4.5.2TransferIntegralCoefficientsDownwards74
3.4.5.3IntegrationontheCoarserMesh74
3.4.5.4TransferBackIntegrationResults75
3.4.5.5ModificationontheFinerMesh75
References76
4LubricationDesignofTypicalMechanicalElements78
4.1SliderandThrustBearings78
4.1.1BasicEquations78
4.1.1.1ReynoldsEquation78
4.1.1.2BoundaryConditions78
4.1.1.3ContinuousConditions79
4.1.2SolutionsofSliderLubrication79
4.2JournalBearings81
4.2.1AxisPositionandClearanceShape81
4.2.2InfinitelyNarrowBearings82
4.2.2.1Load-CarryingCapacity83
4.2.2.2DeviationAngleandAxisTrack83
4.2.2.3Flow84
4.2.2.4FrictionalForceandFrictionCoefficient84
4.2.3InfinitelyWideBearings85
4.3HydrostaticBearings88
4.3.1HydrostaticThrustPlate89
4.3.2HydrostaticJournalBearings90
4.3.3BearingStiffnessandThrottle90
4.3.3.1ConstantFlowPump91
4.3.3.2CapillaryThrottle91
4.3.3.3Thin-WalledOrificeThrottle92
4.4SqueezeBearings92
4.4.1RectangularPlateSqueeze93
4.4.2DiscSqueeze94
4.4.3JournalBearingSqueeze94
4.5DynamicBearings96
4.5.1ReynoldsEquationofDynamicJournalBearings96
4.5.2SimpleDynamicBearingCalculation98
4.5.2.1ASuddenLoad98
4.5.2.2RotatingLoad99
4.5.3GeneralDynamicBearings100
4.5.3.1InfinitelyNarrowBearings100
4.5.3.2SuperimpositionMethodofPressures101
4.5.3.3SuperimpositionMethodofCarryingLoads101
4.6GasLubricationBearings102
4.6.1BasicEquationsofGasLubrication102
4.6.2TypesofGasLubricationBearings103
4.7RollingContactBearings106
4.7.1EquivalentRadiusR107
4.7.2AverageVelocityU107
4.7.3CarryingLoadPerWidthW/b107
4.8GearLubrication108
4.8.1InvoluteGearTransmission109
4.8.1.1EquivalentCurvatureRadiusR110
4.8.1.2AverageVelocityU111
4.8.1.3LoadPerWidthW/b112
4.8.2ArcGearTransmissionEHL112
4.9CamLubrication114
References116
5SpecialFluidMediumLubrication118
5.1MagneticHydrodynamicLubrication118
5.1.1CompositionandClassificationofMagneticFluids118
5.1.2PropertiesofMagneticFluids119
5.1.2.1DensityofMagneticFluids119
5.1.2.2ViscosityofMagneticFluids119
5.1.2.3MagnetizationStrengthofMagneticFluids120
5.1.2.4StabilityofMagneticFluids120
5.1.3BasicEquationsofMagneticHydrodynamicLubrication121
5.1.4InfluenceFactorsonMagneticEHL123
5.2Micro-PolarHydrodynamicLubrication124
5.2.1BasicEquationsofMicro-PolarFluidLubrication124
5.2.1.1BasicEquationsofMicro-PolarFluidMechanics124
5.2.1.2ReynoldsEquationofMicro-PolarFluid125
5.2.2InfluenceFactorsonMicro-PolarFluidLubrication128
5.2.2.1InfluenceofLoad128
5.2.2.2MainInfluenceParametersofMicro-PolarFluid129
5.3LiquidCrystalLubrication130
5.3.1TypesofLiquidCrystal130
5.3.1.1TribologicalPropertiesofLyotropicLiquidCrystal131
5.3.1.2TribologicalPropertiesofThermotropicLiquidCrystal131
5.3.2DeformationAnalysisofLiquidCrystalLubrication132
5.3.3FrictionMechanismofLiquidCrystalasaLubricantAdditive136
5.3.3.1TribologicalMechanismof4-pentyl-4′-cyanobiphenyl136
5.3.3.2TribologicalMechanismofCholesterylOleylCarbonate136
5.4ElectricDoubleLayerEffectinWaterLubrication137
5.4.1ElectricDoubleLayerHydrodynamicLubricationTheory138
5.4.1.1ElectricDoubleLayerStructure138
5.4.1.2HydrodynamicLubricationTheoryofElectricDoubleLayer138
5.4.2InfluenceofElectricDoubleLayeronLubricationProperties142
5.4.2.1PressureDistribution142
5.4.2.2Load-CarryingCapacity143
5.4.2.3FrictionCoefficient144
check!

熱門詞條

聯絡我們